Synopsis

Benchmarking the Standard Model

Physics 4, s161
Measurements of isospin symmetry-breaking corrections to beta-decay transitions in chlorine nuclei provide a stringent test of the standard model.

Isospin is a quantum number originally developed in the 1930s to describe the symmetry between the newly discovered neutron and the more thoroughly studied proton. Today, researchers study isospin in the context of quark physics and specifically the symmetry properties of up and down quarks. Precision experiments that look for isospin-symmetry-breaking corrections to nuclear transitions can help determine quantities like the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements, which describe how the family tree of quarks is organized. They also help test the conserved vector current hypothesis, which is a fundamental tenet of the standard model and is analogous to the conservation of electric current in electromagnetic interactions. In a paper in Physical Review Letters, Dan Melconian at Texas A&M, College Station, and his colleagues report their measurement of isospin symmetry breaking in a positron-decay transition from chlorine- 32. Their results yield convincing support for one of the most demanding tests of the standard model: verification of the unitarity of the CKM matrix.

In their experiments, Melconian et al. measured the gamma-ray yields following positron-decay transitions from the 290-millisecond decay of chlorine- 32 nuclei. Collisions of sulfur- 32 nuclei with a hydrogen gas target generated reaction products from which the chlorine nuclei were selected. These nuclei were collected on an aluminum-Mylar tape that was rapidly shuttled to a detection station nearby. Observed gamma-ray emission from the so-called superallowed transition in the decay revealed isospin symmetry breaking that is the largest measured to date. This result was then demonstrated to be in good agreement with nuclear shell-model calculations performed by the authors, who used the same theoretical methods as those employed in the test of CKM matrix unitarity. Agreement between theory and experiment for a transition with large broken symmetry is an important validation of previous unitarity tests done with transitions having much smaller symmetry breaking. – David Voss


Subject Areas

Nuclear Physics

Related Articles

Nuclear Physics from Particle Physics
Particles and Fields

Nuclear Physics from Particle Physics

A new theoretical analysis connects the results of high-energy particle experiments at the Large Hadron Collider with three-proton correlations inside nuclei. Read More »

Heavy Element Quandary in Stars Worsened by New Nuclear Data
Astrophysics

Heavy Element Quandary in Stars Worsened by New Nuclear Data

A widening gap between the cerium-140 abundance predicted by theories and that measured in observations of certain stars indicates a potential need for updated models of element formation. Read More »

Colossal Magnetic Field Detected in Nuclear Matter
Nuclear Physics

Colossal Magnetic Field Detected in Nuclear Matter

Collisions of heavy ions briefly produced a magnetic field 1018 times stronger than Earth’s, and it left observable effects. Read More »

More Articles