Synopsis

A Bond Revealed

Physics 5, s125
Single-molecule microscopy reveals the nature of the chemical bonds between a large organic molecule and a metallic surface.
C. Wagner et al., Phys. Rev. Lett. (2012)

The deposition of organic molecules on metallic or semiconducting surfaces can be used to realize new molecular architectures with tailored properties, with applications in molecular recognition, catalysis, photovoltaics, and molecular electronics. The design of complex organic/inorganic interfaces depends critically on a thorough understanding of how molecules bind to a surface, which ultimately determines their orientation, conformation, and stability.

In Physical Review Letters, Christian Wagner at the Jülich Research Center, Germany, and collaborators report an investigation of the mechanisms that hold the organic molecule PTCDA, a member of a technologically relevant family of aromatic compounds, to a noble metal surface. By applying a combination of atomic force microscopy and scanning tunneling microscopy, the authors manipulate a single molecule, pull it away from the surface, and observe the breaking and re-forming of the molecule-surface bonds.

These experiments measure the forces that govern the molecule-substrate interaction and reveal the precise shape of the binding potential. The authors analyze their results to quantify three contributions to bonding: local chemical bonds between molecular oxygen atoms and the surface; bonding arising from the hybridization of delocalized molecular orbitals with substrate states; and Van der Waals forces, such as those arising from dipolar and multipolar interactions and from Pauli’s exclusion principle.

Wagner et al.’s work provides a rare experimental window on the bonding channels of large organic molecules at surfaces and may help refine density-functional-theory calculations that describe this important class of molecular systems. – Matteo Rini


Subject Areas

NanophysicsMaterials SciencePhysical Chemistry

Related Articles

Imaging Antiferromagnetic Domains
Condensed Matter Physics

Imaging Antiferromagnetic Domains

A simple light microscopy setup can map the micrometer-scale domains of a potentially useful class of magnetic materials. Read More »

Light Could Drive Cooling Cycle in Ferroelectric Materials
Energy Research

Light Could Drive Cooling Cycle in Ferroelectric Materials

Ultraviolet photons induce potassium niobate to behave like a potent solid-state refrigerant, according to new calculations. Read More »

A Jamming Framework for Soft Granular Materials
Materials Science

A Jamming Framework for Soft Granular Materials

Experiments on soft granular materials have allowed researchers to derive a rheological description for these materials by extending an established framework valid for hard granular materials. Read More »

More Articles