Synopsis: Higgs-like Particle in a Mirror

The particle thought to be the Higgs boson seems likely to pass an important identity check.

Physicists have been searching for the Higgs boson for nearly 50 years. In July 2012, two collaborations at the Large Hadron Collider at CERN announced the discovery of a new particle that meets the general expectations for a Higgs boson. But is this particle the final piece of the standard model, or something more exotic?

One important test is the parity of the particle: how its mirror image behaves. In a mirror, even-parity particles look the same, whereas odd-parity particles appear reversed. The standard model Higgs boson is a scalar, a spin-0 even-parity particle. But there are many models that include a spin-0 odd-parity particle known as a pseudoscalar.

For the first time, the CMS Collaboration at the LHC has placed constraints on this possibility. They study decays of the new particle to a pair of Z bosons, each of which, in turn, decays to a pair of leptons. They analyze the angular distribution of the leptons under the assumption that the new particle is spin 0, and find that the odd-parity pseudoscalar scenario is disfavored, having an effective statistical p value of only 2.4%. So all the evidence thus far is consistent with the new particle being the standard model Higgs boson. – Robert Garisto


Features

More Features »

Announcements

More Announcements »

Subject Areas

Particles and Fields

Previous Synopsis

Quantum Information

Hitting Reset After a Quantum Measurement

Read More »

Related Articles

Focus: Muons Reveal Record-Breaking Thunderstorm Voltage
Geophysics

Focus: Muons Reveal Record-Breaking Thunderstorm Voltage

A thunderstorm probed with atmospheric muons had an electric potential exceeding one billion volts, much higher than values measured previously.   Read More »

Synopsis: A Lens for Millimeter-Sized Electron Accelerators
Particles and Fields

Synopsis: A Lens for Millimeter-Sized Electron Accelerators

An array of silicon pillars could focus and confine an electron beam in future computer-chip-sized electron accelerators, allowing faster acceleration of electrons using this technology. Read More »

Synopsis: Putting the Proton Radius in Its Proper Place
Particles and Fields

Synopsis: Putting the Proton Radius in Its Proper Place

An analysis of the proton radius puzzle helps to define what the proton radius really means. Read More »

More Articles