Synopsis: Slip Sliding Away

Thin layers of graphite can slide on a surface at speeds up to 25m/s, in a quasifrictionless regime called superlubrication.
Synopsis figure
J. Yang et al., Phys. Rev. Lett. (2013)

Friction can represent a key obstacle to the miniaturization of devices like the read/write heads in a hard drive. Because they have a high surface-to-volume ratio, nanoscale components are particularly susceptible to friction–and thus wear—as they move in contact with a solid surface. This problem has motivated research on a recently discovered phenomenon called superlubricity: a regime of nearly vanishing friction that kicks in when the two sliding surfaces are “incommensurate,” i.e., when the atoms on one surface have a different spacing than those on the counterface.

Researchers have been able to study superlubricity by using a fine tip to slide small objects against a surface, but technical hurdles limit such observations to small sliding speeds (less than 10 micron/s), far from those of practical relevance. Now, in an article in Physical Review Letters, Jiarui Yang at the Tsinghua University, China, and colleagues report that two micron-sized, incommensurate layers of graphite can slide against each other at a speed that is over six orders of magnitude higher than that seen in previous superlubricity experiments.

The authors used a tungsten tip to move the upper layer of a graphite mesa, misorienting it (thus making it incommensurate) and sliding it laterally. From previous work, they knew the layer tends to retract to its original position, driven like a spring by interlayer van der Waals forces. In the new study, a laser beam was used to monitor the layer’s position as a function of time. The results revealed that sliding of the layers occurred in a low-friction regime of superlubrication, with retracting speeds of up to 25m/s. – Matteo Rini


More Features »


More Announcements »

Subject Areas

NanophysicsMaterials Science

Previous Synopsis


Cosmology Near and Far

Read More »

Next Synopsis

Biological Physics

Knowing Your Place

Read More »

Related Articles

Synopsis: A Crystal Ball for 2D Materials
Materials Science

Synopsis: A Crystal Ball for 2D Materials

Researchers predict new two-dimensional materials whose structures differ from their three-dimensional counterparts. Read More »

Viewpoint: Electron Pulses Made Faster Than Atomic Motions
Atomic and Molecular Physics

Viewpoint: Electron Pulses Made Faster Than Atomic Motions

Electron pulses have shattered the 10-femtosecond barrier at which essentially all atomic motion is frozen in materials. Read More »

Synopsis: Small Particles Untangle Polymer Chains
Soft Matter

Synopsis: Small Particles Untangle Polymer Chains

Adding nanoparticles to molten polymer disentangles its constituent molecular chains, allowing them to flow more easily. Read More »

More Articles