Synopsis

Slip Sliding Away

Physics 6, s88
Thin layers of graphite can slide on a surface at speeds up to 25m/s, in a quasifrictionless regime called superlubrication.
J. Yang et al., Phys. Rev. Lett. (2013)

Friction can represent a key obstacle to the miniaturization of devices like the read/write heads in a hard drive. Because they have a high surface-to-volume ratio, nanoscale components are particularly susceptible to friction–and thus wear—as they move in contact with a solid surface. This problem has motivated research on a recently discovered phenomenon called superlubricity: a regime of nearly vanishing friction that kicks in when the two sliding surfaces are “incommensurate,” i.e., when the atoms on one surface have a different spacing than those on the counterface.

Researchers have been able to study superlubricity by using a fine tip to slide small objects against a surface, but technical hurdles limit such observations to small sliding speeds (less than 10 micron/s), far from those of practical relevance. Now, in an article in Physical Review Letters, Jiarui Yang at the Tsinghua University, China, and colleagues report that two micron-sized, incommensurate layers of graphite can slide against each other at a speed that is over six orders of magnitude higher than that seen in previous superlubricity experiments.

The authors used a tungsten tip to move the upper layer of a graphite mesa, misorienting it (thus making it incommensurate) and sliding it laterally. From previous work, they knew the layer tends to retract to its original position, driven like a spring by interlayer van der Waals forces. In the new study, a laser beam was used to monitor the layer’s position as a function of time. The results revealed that sliding of the layers occurred in a low-friction regime of superlubrication, with retracting speeds of up to 25m/s. – Matteo Rini


Subject Areas

NanophysicsMaterials Science

Related Articles

Electron–Hole System Harbors Rich Phases
Materials Science

Electron–Hole System Harbors Rich Phases

Researchers predict that several exotic states of matter can exist in semiconductor structures hosting electrons in one layer and holes in another. Read More »

Thermal Conductivity Not Too Hot to Handle
Materials Science

Thermal Conductivity Not Too Hot to Handle

A radiometry technique directly measures thermal conductivity in molten metals and confirms the relationship with electrical resistivity. Read More »

Shape Matters in Self-Assembly
Nanophysics

Shape Matters in Self-Assembly

A theoretical study of self-assembly finds that hexagon-shaped building blocks can form large structures faster than triangular or square blocks. Read More »

More Articles