Synopsis

A Long, Hard Look at Cosmic-Ray Positrons

Physics 6, s110
A satellite-based experiment has characterized the highest energy positrons contained in cosmic rays, which will help sort out astrophysical models for their origin.
PAMELA Collaboration

Recent experiments have revealed a striking feature of the high-energy cosmic rays coming from outer space: they contain an odd excess of high-energy positrons, the antiparticles of electrons. The result, obtained through years of balloon and space-borne measurements, is not compatible with current astrophysical models. The excess points at yet-to-be-identified sources of cosmic-ray positrons, which could be nearby cosmic bodies such as pulsars or, as many speculated, dark matter annihilation events.

Previous positron surveys, most recently the AMS experiment on the Earth-orbiting International Space Station, have focused on the accurate assessment of the positron-electron fraction (how many positrons are present for each electron). But a more complete characterization requires knowing the energy spectrum of positrons (the absolute number of positrons as a function of particle energy). This is more challenging, as it requires absolute calibration of the detection scheme over a wide range of energies.

Now, a large international collaboration running PAMELA—the satellite-based experiment that delivered the first conclusive evidence for the high-energy positron excess in 2009—has extended its previous surveys and analyzed about 25000 positrons collected over three years of measurements, with energies falling in the 0.5 300 giga-electron-volt range. The results, as reported in Physical Review Letters, offer the most accurate picture to date of the information-rich, high-energy part of the positron spectrum.

While confirming the positron abundance known from the previous positron-fraction measurements, the data provide new and complementary information: precise knowledge of the positron energy spectrum will pose further constraints on theories, helping vet the multitude of models, including dark-matter-based ones, that seek to pinpoint the mysterious sources of the most energetic positrons. – Matteo Rini


Subject Areas

Particles and FieldsAstrophysicsCosmology

Related Articles

Viewing a Quantum Spin Liquid through QED
Condensed Matter Physics

Viewing a Quantum Spin Liquid through QED

A numerical investigation has revealed a surprising correspondence between a lattice spin model and a quantum field theory. Read More »

Seven Astrophysical Tau Neutrinos Unmasked
Particles and Fields

Seven Astrophysical Tau Neutrinos Unmasked

Scientists have found seven astrophysical tau neutrinos—particles that are notoriously difficult to detect—in an analysis of data from the IceCube Neutrino Observatory in Antarctica. Read More »

A Pathway to Making Molecular Oxygen That Doesn’t Involve Life
Astrophysics

A Pathway to Making Molecular Oxygen That Doesn’t Involve Life

Researchers have quantified a pathway for the formation of molecular oxygen from the interaction of carbon dioxide with electrons, key information for searches of life on other worlds. Read More »

More Articles