Synopsis: Sliding Sand

Adding a small amount of water to sand can significantly reduce the sliding friction.
Synopsis figure
A. Fall et al., Phys. Rev. Lett. (2014)

Everyone who has been to the beach will know that dry sand doesn’t make good sandcastles—the grains slump into a puddle when the bucket is lifted. Adding water can solve this problem: the grains stick and the castle holds its shape. This is due to liquid bridges that start to form between the grains when water is added. Once there is enough water, these bridges act like glue, keeping the grains in place. This is great for sand castle building, and also, it turns out, for sand transportation. Writing in Physical Review Letters, Daniel Bonn from the University of Amsterdam, Netherlands, and colleagues show that adding water to sand significantly reduces the sliding friction of an object moving over the sand, but only for small amounts of water.

Bonn et al. tested the sliding friction of dry and wet sand when a weighted sled was pulled across the surface. As water was added, both the force needed to pull the sled and the friction coefficient were found to decrease below that of the dry sand, before increasing at higher water contents. When the sand was dry, a heap of sand formed in front of the sled, hindering its movement; a relatively high force was needed for the sled to reach a steady state. Adding water made the sand more rigid, and the heaps decreased in size until no heap formed in front of the moving sled and therefore a lower applied force was needed to reach a steady state. Why then did the sliding friction increase at higher water contents? The authors suggest that this was due to a decrease in the stiffness accompanying water saturation, similar to that seen in sandcastles—add too much water and the capillary bridges, which previously acted like a glue between individual grains, start to merge and disappear. – Katherine Wright


Features

More Features »

Announcements

More Announcements »

Subject Areas

Materials Science

Previous Synopsis

Related Articles

Viewpoint: Cooling with a Squeeze
Materials Science

Viewpoint: Cooling with a Squeeze

A newly designed alloy exhibits a “colossal” elastocaloric effect—a temperature change under strain—making it a good candidate for an environmentally friendly type of cooling. Read More »

Viewpoint: Polarons Get the Full Treatment
Materials Science

Viewpoint: Polarons Get the Full Treatment

A new way to model polarons combines the intuition of modeling with the realism of simulations, allowing these quasiparticles to be studied in a broader range of materials. Read More »

Synopsis: Nonlinear Forces Explain Elastomer Ridges
Materials Science

Synopsis: Nonlinear Forces Explain Elastomer Ridges

A new theory that incorporates nonlinear properties of rubber-like materials correctly describes the shape of the ridge that forms when the material is strongly deformed by an object. Read More »

More Articles