Synopsis: Seeing the Glass of Milk as All Empty

A normally opaque medium can become fully transparent to properly tailored acoustic waves.
Synopsis figure
B. Gérardin et al., Phys. Rev. Lett. (2014)

A glass of milk is opaque because light scatters off of randomly placed molecules. But disordered materials like milk or clouds could appear transparent to certain combinations of waves that constructively interfere with each other. Previous experiments have realized enhanced transmission, but now, for the first time, researchers have observed 100% transmission (as well as 100% reflection) of acoustic waves traveling through a two-dimensional disordered medium.

A disordered material presents incoming waves with a random field of scatterers. A single plane wave could never wind its way through this thicket, but several plane waves coming in at different directions could scatter in a constructive way. Theorists predicted 30 years ago that certain wave combinations could produce full transmission or reflection, but identifying these so-called “open” or “closed” channels is challenging because most systems have an enormous set of possible incoming waves.

To reduce the size of the problem, Alexandre Aubry and his colleagues from the Langevin Institute (ESPCI ParisTech, CNRS) in France looked at acoustic (vibrational) waves traveling on an aluminum plate with randomly drilled holes that act as scattering sites. Laser pulses generated incoming waves at 50 separate points on the plate, and the resulting vibrations were recorded at specific output points. From this data, the researchers derived an input-output transmission matrix, which allowed them to compute the combination of input waves corresponding to open (closed) channels. They subsequently prepared such waves and verified that their transmission (reflection) was roughly 100%. The results provide the first demonstration of long-standing theoretical predictions and might help design optimal schemes for controlling wave propagation in digital communication channels.

This research is published in Physical Review Letters.

–Michael Schirber


Features

More Features »

Announcements

More Announcements »

Subject Areas

OpticsMaterials Science

Previous Synopsis

Next Synopsis

Related Articles

Synopsis: Reflectivity of Ultrathin Mirror Switches with Voltage
Semiconductor Physics

Synopsis: Reflectivity of Ultrathin Mirror Switches with Voltage

Researchers designed an atomically thin mirror with electronically switchable reflectivity that could be useful in optoelectronic circuits.   Read More »

Viewpoint: Spin Gyroscope is Ready to Look for New Physics
Optics

Viewpoint: Spin Gyroscope is Ready to Look for New Physics

An enhanced version of a magnetometer based on atomic spins could be used to search for theoretically predicted exotic fields with ultrahigh sensitivity. Read More »

Synopsis: An Atlas for 2D Metals
Materials Science

Synopsis: An Atlas for 2D Metals

A new “atlas” lists the predicted properties of two-dimensional materials that could be formed from many metallic elements in the periodic table. Read More »

More Articles