Synopsis: Enter the Metacage

An array of equally spaced nanowires, dubbed a metacage, could block optical radiation from entering or escaping a region of arbitrary shape.
Synopsis figure
A. Mirzaei et al., Phys. Rev. Lett. (2015)

The nanoworld never ceases to surprise. The latest unexpected effect to emerge from this domain has been unveiled by Ali Mirzaei and collaborators from the Australian National University. Using analytical and numerical methods, they show how an array of equally spaced nanowires could block light from entering, or escaping, a region of almost arbitrary shape—something one might expect to be possible only using a continuous enclosure devoid of gaps. To demonstrate that the shielded region can take on nearly any form, they considered a wall-like region, a hexagonal shape and even an area shaped like Australia, the country in which the researchers are based.

The trick, Mirzaei and colleagues found, is to design arrays for which mathematical lines called separatrices overlap. The separatrix of a nanowire marks the boundary between a region around the nanowire where light flows into, and is absorbed by, the nanowire and an outer region where light flows past it. If the separatrices of the nanowires overlap, the transmission of light through the array is suppressed. The authors show that the overlap can be generated by using nanowires made out of dieletrics or semiconductors and by spacing them out with gaps of width comparable to the nanowires’ radii but smaller than the light’s wavelength.

The arrays, which they dub optical metacages, could be used in lab-on-chip settings to shelter microorganisms from radiation, while keeping them alive by letting liquids and gases through. They could also be employed to protect components of optoelectronic circuitry from unwanted light.

This research is published in Physical Review Letters.

–Ana Lopes


Features

More Features »

Announcements

More Announcements »

Subject Areas

MetamaterialsOptics

Previous Synopsis

Next Synopsis

Particles and Fields

LHC Data Might Reveal Nature of Neutrinos

Read More »

Related Articles

Focus: <i>Image</i>—Cooperating Lasers Make Topological Defects
Nonlinear Dynamics

Focus: Image—Cooperating Lasers Make Topological Defects

A circle of interacting lasers is a new model system for exploring topological defects, disordered structures that show up in a wide variety of seemingly unrelated systems. Read More »

Viewpoint: Inducing Transparency with a Magnetic Field
Optics

Viewpoint: Inducing Transparency with a Magnetic Field

A magnetic field applied to an atomic sample in an optical cavity generates optical transparency that could be used to enhance the frequency stability of lasers. Read More »

Focus: <i>Image</i>—Honeycomb Diffraction
Photonics

Focus: Image—Honeycomb Diffraction

Predictions of diffraction patterns for honeycomb photonic crystals were part of a comprehensive study of these structures that may be useful in nanoscale photonic devices. Read More »

More Articles