Synopsis: The Heavy Limit of Dark Matter

A theoretical investigation of super-heavy dark matter particles finds that their existence might be discerned in the cosmic microwave background.

Dark matter is often assumed to consist of particles that weigh as much as a proton but interact like a neutrino. However, dark matter particles could be much heavier, as well as much less interacting. New work from a team of theorists explores the upper limit of mass with a dark matter candidate that they call Planckian interacting dark matter (PIDM). The researchers show that the PIDM model implies a large number of primordial gravitational waves, which could produce a detectable signal in forthcoming cosmic microwave background (CMB) observations.

Dark matter candidates are not hard to come by. Many theories predict weakly interacting particles with masses near the electroweak scale (roughly 100 times the proton mass). These so-called WIMPs would presumably be created in the hot, dense, early Universe with an abundance that is consistent with the dark matter mass density observed in the current Universe.

The trouble is that collider experiments have yet to see any hints of WIMPs, which might mean that researchers will have to look beyond the electroweak scale. Mathias Garny of CERN and his colleagues from CP3-Origins in Denmark propose a particle with a mass near another natural scale, the Planck mass (1019 times the proton mass, or about a microgram). The team assumed these PIDM particles interact with ordinary matter only through gravitation and that large numbers of them formed in the very early Universe during the cosmological epoch called “reheating.” For this model to work, however, the temperature of reheating would have to be higher than usually assumed. A hotter reheating would result in more gravitational waves, which could be confirmed (or ruled out) by next-generation CMB experiments.

This research is published in Physical Review Letters.

–Michael Schirber


More Features »


More Announcements »

Subject Areas

Particles and Fields

Previous Synopsis

Chemical Physics

Shape Shifting Water Droplets

Read More »

Next Synopsis

Materials Science

Waves That Shock Resistance

Read More »

Related Articles

Viewpoint: <i>CP</i> Violations Newly Observed in Beauty Meson Decays
Particles and Fields

Viewpoint: CP Violations Newly Observed in Beauty Meson Decays

Measurements show large matter-versus-antimatter differences in three-pion decays of B mesons, yielding new insights into the strong interaction dynamics that control these decays. Read More »

Synopsis: New Analysis Tightens Constraints on Light Dark Matter
Particles and Fields

Synopsis: New Analysis Tightens Constraints on Light Dark Matter

By reanalyzing experimental data from 2017 and 2018, the XENON Collaboration rules out several varieties of low-mass dark matter, including a range of axion-like particles and dark photons. Read More »

Viewpoint: Homing in on the Neutrino Mass
Particles and Fields

Viewpoint: Homing in on the Neutrino Mass

The Karlsruhe Tritium Neutrino Experiment (KATRIN) shows that the mass of the neutrino is no larger than about 1 eV—cutting in half the existing limit derived from similar experiments. Read More »

More Articles