Synopsis: Magnon Drag

Quantized spin waves known as magnons could experience a drag-like phenomenon in two spatially separated ferromagnetic layers.
Synopsis figure
Image courtesy of Sander Otte

Push a sheet of sandpaper past a second sheet, and a mutual friction between them drags the second sheet along. An analogous effect called Coulomb drag occurs in two closely spaced two-dimensional electron gases: interlayer Coulomb interactions cause electrons flowing in one gas to drag along electrons in the other, generating a current. A theoretical study by Michael Flatté and Tianyu Liu from the University of Iowa, Iowa City, and Giovanni Vignale from the University of Missouri, Columbia, predicts that quantized spin waves dubbed magnons could experience a similar phenomenon in two spatially separated ferromagnetic layers.

The researchers studied magnon transport in this system using a semiclassical Boltzmann approach—a statistical treatment of particle transport in solids. They showed that a steady magnon current running in one of the two layers drives a magnon current in the other layer—in the plane of the layer and generally at an angle to the driving current—through magnetic dipolar interactions between the layers. The effect induces a temperature gradient in the second layer (along the direction of the generated current) that can be observed. The findings may have implications for magnonics, the emerging field of spintronics that aims to build electronic circuitry based on spin currents carried by magnons. For example, the effect could limit how closely components could be put together in a magnonic circuit, because current flow in one component might contaminate the flow in another.

This research is published in Physical Review Letters.

–Ana Lopes

Ana Lopes is a Senior Editor of Physics.


Features

More Features »

Announcements

More Announcements »

Subject Areas

SpintronicsMagnetism

Previous Synopsis

Quantum Physics

Cavity-Controlled Chemistry

Read More »

Next Synopsis

Related Articles

Synopsis: Discovering New Magnetic Materials with Machine Learning
Materials Science

Synopsis: Discovering New Magnetic Materials with Machine Learning

A new computing experiment suggests that machine-learning algorithms can accelerate the discovery and design of new magnetic materials. Read More »

Synopsis: A One-Way Road for Microwaves
Magnetism

Synopsis: A One-Way Road for Microwaves

A simple device controls which direction microwaves travel in a circuit, a critical ingredient for quantum technologies that demand sensitive signal detection. Read More »

Synopsis: Diamond Qubits Take the Stage
Quantum Information

Synopsis: Diamond Qubits Take the Stage

A ten-qubit system based on spins in impure diamond achieves coherence times of over a minute. Read More »

More Articles