Synopsis: Quantum Cryptography Goes a Long Way

A protocol for secure quantum communications has been demonstrated over a record-breaking distance of 404 km.
Synopsis figure
Y. Hua-Lei et al., Phys. Rev. Lett. (2016)

Encryption is critical in many aspects of modern life, such as the millions of credit card transactions that occur every day. However, perfectly secure communication can only be achieved using the strong correlations, or entanglement, between quantum objects. Now, Jian-Wei Pan at the University of Science and Technology of China and his colleagues have experimentally shown that a secure quantum protocol known as measurement-device-independent quantum key distribution (MDIQKD) can be implemented over a distance of 404 km. The result breaks the previous MDIQKD record by over a factor of 2 and paves the way for secure quantum communications between distant cities.

MDIQKD—a protocol proposed in 2012—functions even when it uses photon detectors that are not ideal and have, for example, low detection efficiencies. It can also overcome security loopholes of quantum communication schemes by sending out decoy pulses of light to detect eavesdropping attacks. Pan and his team sent pulses of infrared photons through optical fibers with lengths between 102 and 404 km and optimized the MDIQKD scheme by tuning several parameters, such as the average number of photons per pulse. The protocol was found to be secure up to the longest distance. For each length, the researchers also determined the maximum speed by which cryptographic keys could be securely distributed. Compared with earlier experiments, they demonstrated a 500-fold increase in speed, reaching a key-distribution rate that would be sufficient to ensure encrypted voice transmission by telephone.

This research is published in Physical Review Letters.

–Katherine Kornei

Katherine Kornei is a freelance writer based in Portland, Oregon


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum Information

Previous Synopsis

Nuclear Physics

Neutron Stars in a Petri Dish

Read More »

Next Synopsis

Related Articles

Synopsis: Entanglement in Broad Daylight
Quantum Information

Synopsis: Entanglement in Broad Daylight

Photons entangled in high dimensions are more resilient to noise, making them ideal for quantum communication applications. Read More »

Viewpoint: Fluxonium Steps up to the Plate
Quantum Information

Viewpoint: Fluxonium Steps up to the Plate

A decade-old alternative to the leading superconducting qubit exhibits the coherence times needed for applications. Read More »

Viewpoint: Making Diamond Qubits Talk to Light
Semiconductor Physics

Viewpoint: Making Diamond Qubits Talk to Light

A solid-state qubit satisfies three key requirements of a building block for a quantum network. Read More »

More Articles