Synopsis: Thermal Radiation Gets a Boost

The thermal radiation transfer between two quartz plates separated by a 200-nm gap is 45 times greater than predicted by conventional laws for blackbodies.
Synopsis figure
M. Ghashami et al., Phys. Rev. Lett. (2018)

When two objects at different temperatures are placed within nanometers of each other, the thermal transfer of energy between them can exceed that expected for standard blackbodies by many orders of magnitude. This effect, which could be beneficial to many energy applications, results from the near-field coupling of the electromagnetic waves radiated by the objects. But, so far, experimental demonstrations have used objects too small to have practical applications. Now, Keunhan Park, of the University of Utah in Salt Lake City, and colleagues have observed the effect with millimeter-sized plates of quartz.

Testing this near-field radiation-transfer enhancement in experiments is tricky. The two objects must be positioned in a vacuum with nanometer precision, their surfaces must be exactly parallel, and no heat should escape by other means—all while maintaining a significant temperature difference between the plates. The team designed a setup that meets all these requirements. They placed two quartz plates, 5×5 mm in size, at separations of 200 and 1200 nm and created temperature differences of up to 156 K. At the smallest separation, Park and colleagues observed that the thermal radiation transfer between the plates was 45 times greater than that expected for blackbody radiation.

A theoretical analysis indicated that the boost comes mostly from surface phonon polaritons—mixed excitations that are a combination of electromagnetic waves with lattice vibrations. At close separations, the polaritons in the two plates couple to each other and aid the transfer of thermal energy. The results suggest that materials hosting phonon polaritons could be used to enhance energy transport in solid-state heat engines or to remove heat from nanodevices.

This research is published in Physical Review Letters.

–Christopher Crockett

Christopher Crockett is a freelance writer based in Montgomery, Alabama.


Features

More Features »

Subject Areas

NanophysicsCondensed Matter PhysicsMaterials Science

Previous Synopsis

Next Synopsis

Atomic and Molecular Physics

Time Crystals Multiply

Read More »

Related Articles

Synopsis: Atoms Put On a Bloch Party
Atomic and Molecular Physics

Synopsis: Atoms Put On a Bloch Party

Bloch oscillations—first predicted to occur for electrons in a crystal—have been observed in an optical lattice containing ultracold atoms. Read More »

Viewpoint: Crystal Defects Mimic Elusive Fractons
Condensed Matter Physics

Viewpoint: Crystal Defects Mimic Elusive Fractons

A newly discovered duality shows that crystalline defects exhibit the behavior of exotic theoretical particles known as fractons. Read More »

Synopsis: Time Crystals Multiply
Atomic and Molecular Physics

Synopsis: Time Crystals Multiply

Researchers uncover evidence of two new time crystals in systems of spins periodically driven by NMR pulses. Read More »

More Articles