Synopsis

Quantum Dots Serve Entangled Photons on Demand

Physics 11, s82
Quantum dots that emit entangled photon pairs on demand could be used in quantum communication networks.
D. Huber and C. Schimpf/Johannes Kepler University

Quantum communication and computing protocols require sources of photons whose quantum states are highly correlated, or “entangled.” Sources of photon pairs with exceptional degrees of entanglement exist, but they cannot emit such photons on demand. Now, Daniel Huber at Johannes Kepler University, Austria, and colleagues have demonstrated a source of on-demand entangled photon pairs based on nanostructures of semiconducting material known as quantum dots.

State-of-the-art entangled photon sources are based on a process called parametric down-conversion, which converts an input photon into a pair of entangled photons. Such sources, however, emit entangled photons at random times. In contrast, quantum dots can produce entangled photon pairs on demand. But usually the pairs they produce aren’t perfectly entangled because of decoherence of the dot’s quantum states. A particularly detrimental decoherence mechanism is due to an effect known as fine-structure splitting, which spoils the entanglement by scrambling the relative phase of the two emitted photons.

Huber et al. solved this problem with a piezoelectric device that, by applying strain to a GaAs quantum dot, modifies the symmetry of the potential that confines the electrons and holes within the dot, thereby erasing the fine-structure splitting. In experiments, the team found a level of entanglement between emitted photons that was 10% higher than the best quantum-dot sources previously reported and almost on par with that of parametric-conversion sources. These new sources, which are encased in micrometer-thin membranes, could easily be incorporated in integrated photonic circuits.

This research is published in Physical Review Letters.

–Mallory Pickett

Mallory Pickett is a freelance writer based in California.


Subject Areas

Quantum PhysicsQuantum Information

Related Articles

Measuring Qubits with “Time Travel” Protocol
Quantum Information

Measuring Qubits with “Time Travel” Protocol

Quantum sensing can benefit from entanglement protocols that can be interpreted as allowing qubits to go backward in time to choose an optimal initial state. Read More »

Mechanical Coupling to Spin Qubits
Quantum Information

Mechanical Coupling to Spin Qubits

A vibrating nanobeam could be used to share information between distant solid-state spin qubits, potentially allowing use of these qubits in complex computations. Read More »

A Simple Electronic Circuit Manifests a Complex Physical Effect
Atomic and Molecular Physics

A Simple Electronic Circuit Manifests a Complex Physical Effect

Using a single set of measurements of an electronic circuit, researchers have characterized the properties of the topologically protected edge states of a quantum Hall system. Read More »

More Articles