Synopsis: Sound Propagates in a 2D Bose Gas Despite Lack of Collisions

Experiments and simulations indicate that collisionless interactions among atoms in a 2D Bose gas can transmit sound waves.
Synopsis figure
J. L. Ville et al., Phys. Rev. Lett. (2018)

Sound typically propagates through a medium via collisions between atoms. But these bumps aren’t always required. Two teams of researchers reveal that sound can travel in a 2D Bose gas—a thin film of bosons—even when its density is so low that the atoms don’t collide.

Collisionless sound propagation has been documented in systems including Bose-Einstein condensates near absolute zero and liquid helium. But until now, sound propagation hadn’t been detected in an ultracold 2D dilute gas. Jérôme Beugnon and colleagues from the Collège de France in Paris changed that, showing that sound can propagate in a 2D Bose gas of rubidium atoms. The team measured the speed and amplitude of sound waves moving through the system as they raised its temperature from 50 nK to 300 nK—a temperature range over which rubidium transitions from a superfluid to a normal gas. At 200 nK—the superfluid transition temperature—the team expected a sudden dropoff in both parameters as the superfluid behavior vanished, but it didn’t come.

To understand why, Miki Ota of the University of Trento in Italy and colleagues developed a theory and performed numerical simulations for sound waves moving in a collisionless 2D Bose gas. Their results suggest that weak repulsive interactions among the atoms can take on the role that collisions play in other systems, allowing the waves to propagate. These same interactions were previously found to be responsible for sound propagation in superfluids. The two teams say that their results could extend to 3D Bose gases and other exotic low-temperature fluids, allowing sound to be used as a tool to better understand the properties and behaviors of these systems.

This research is published in Physical Review Letters.

–Christopher Crockett

Christopher Crockett is a freelance writer based in Arlington, Virginia.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Next Synopsis

Related Articles

Synopsis: Making Mixtures of Magnetic Condensates
Atomic and Molecular Physics

Synopsis: Making Mixtures of Magnetic Condensates

A condensate mixing two species of strongly magnetic atoms provides a new experimental window into many-body phenomena. Read More »

Synopsis: Ion Suppresses Rydberg Creation
Atomic and Molecular Physics

Synopsis: Ion Suppresses Rydberg Creation

Forming an ion in an ultracold atomic cloud delays the subsequent creation of a Rydberg atom until the ion wanders away. Read More »

Viewpoint: Cold Atoms Bear a Quantum Scar
Quantum Information

Viewpoint: Cold Atoms Bear a Quantum Scar

Theorists attribute the unexpectedly slow thermalization of cold atoms seen in recent experiments to an effect called quantum many-body scarring. Read More »

More Articles