Synopsis: A Lens for Millimeter-Sized Electron Accelerators

An array of silicon pillars could focus and confine an electron beam in future computer-chip-sized electron accelerators, allowing faster acceleration of electrons using this technology.
Synopsis figure
D. Black, K. Leedle, N. Sapra/Stanford University

The SLAC National Accelerator Laboratory in California houses one of the world’s shortest particle accelerators. At just a few millimeters long, so-called “on-chip” accelerators could significantly reduce the costs and infrastructure needs of future particle colliders. However, current chip accelerators require conventional particle accelerators to first rev up electrons to nearly the speed of light—the chip then gives the final speed boost. Now Dylan Black at Stanford University, Calfornia, and colleagues have taken a step toward stand-alone chip accelerators, demonstrating a micrometer-sized lens that could be incorporated into such a device. Such a lens will be essential for future chip accelerators if they are to keep slow electrons confined as the particles are pushed to high speeds.

The lens developed by Black and colleagues consists of two rows of 15 silicon pillars. The electron beam travels between the two rows down a 375-nm-wide channel. To activate the lens, the team hits the pillars with a femtosecond-pulsed laser. The laser pulses generate a large, oscillating electromagnetic field between the pillar rows, which pushes the electrons toward the channel’s center, focusing and confining the particles in a narrow beam.

The team achieved a focusing power equivalent to that of plasma-based lenses—an alternative but undesirable lens option that is much less stable. They also tuned the lens’ power by adjusting the strength of the laser pulses. The team has yet to incorporate the lens into a chip accelerator. But they say that step should be relatively easy—similar pillar structures already exist in these devices, where the electric field they generate is used to accelerate the electrons.

This research is published in Physical Review Letters.

–Katherine Wright

Katherine Wright is a Senior Editor of Physics.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Particles and Fields

Previous Synopsis

Next Synopsis

Related Articles

Synopsis: Ion Collisions Reveal Photon-Photon Scattering
Particles and Fields

Synopsis: Ion Collisions Reveal Photon-Photon Scattering

Researchers at the Large Hadron Collider conclusively detect two photons scattering off each other, following initial evidence first published in 2017. Read More »

Viewpoint: Putting Distance Between Collider Events
Particles and Fields

Viewpoint: Putting Distance Between Collider Events

A new way to measure the “distance” between high-energy particle collision events can help researchers interpret events involving, for example, the production of Higgs bosons or of top quarks. Read More »

Synopsis: How a Pentaquark is Put Together
Particles and Fields

Synopsis: How a Pentaquark is Put Together

New Large Hadron Collider data reveal that exotic quark quintets, discovered in 2016, are composites of quark-antiquark mesons and three-quark baryons.   Read More »

More Articles