Synopsis: Dark Energy Solution for Hubble Tension

A discrepancy between measurements of the cosmic expansion rate might be resolved by adding an extra form of dark energy.
Synopsis figure
R. Williams/STScI, Hubble Deep Field Team, NASA, ESA

The rate at which the Universe expands, described by the Hubble constant, has long been a difficult quantity to nail down. The two current strategies for determining the Hubble constant are in conflict, and this tension only seems to get worse after each data release. A new theory suggests that the solution could be to add an extra type of dark energy that would have briefly sped up the Universe a long time ago before galaxies appeared.

The Hubble constant can be found “locally” by measuring the speed at which an object (usually a supernova) is moving away from us and dividing by its distance. Another way to estimate the Hubble constant involves extrapolation of data on the early Universe from the cosmic microwave background (CMB). While the two techniques produce similar estimates, the values are separated by a statistically significant 4 sigma.

In deriving the CMB estimate, researchers have assumed a “standard” cosmological model, in which the density of dark energy is constant through time. To resolve the Hubble tension, Marc Kamionkowski of Johns Hopkins University, Maryland, and colleagues imagined a second contribution to the dark energy coming from a so-called scalar field that has a time-varying energy density. Focusing on types of scalar field potentials, the team determined parameters of these potentials that could give just enough acceleration in the early Universe to bring the CMB estimate of the Hubble constant in line with the local measurement. The researchers predicted that the brief acceleration from this scalar field could produce subtle, but detectable, signatures in the CMB that future surveys might observe.

This research is published in Physical Review Letters.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Cosmology

Next Synopsis

Particles and Fields

How a Pentaquark is Put Together

Read More »

Related Articles

Viewpoint: Supermassive Black Hole May Constrain Superlight Dark Matter
Cosmology

Viewpoint: Supermassive Black Hole May Constrain Superlight Dark Matter

An interpretation of the black hole image taken by the Event Horizon Telescope hints of new constraints on the mass of dark matter. Read More »

Viewpoint: Dark Energy Faces Multiple Probes
Astrophysics

Viewpoint: Dark Energy Faces Multiple Probes

The Dark Energy Survey has combined its analysis of four cosmological observables to constrain the properties of dark energy—paving the way for cosmological surveys that will run in the next decade. Read More »

More Articles