Synopsis: Squeezing an Electron Crystal

Researchers have determined the energy required to add an electron to a Wigner crystal—an ordered crystalline state made of electrons rather than atoms.
Synopsis figure
E. Minot/Oregon State University

The Wigner crystal is an elusive beast. Predicted in 1934, this crystal of electrons, which is one of the most strongly correlated states of matter, forms when the electron density is ultralow. But a lack of clean enough systems with that property make it hard to measure. Within the last few months, researchers have imaged its structure. Now another group, led by Vikram Deshpande at the University of Utah, Salt Lake City, has measured the energy required to add an electron to the crystal, a quantity that reveals the interaction strength of the system. Deshpande says that they were happily surprised to finally achieve the result, as it comes after decades of inconclusive measurements by other groups.

The team created a Wigner crystal by adding electrons one by one to a carbon nanotube suspended between two supports and cooled to 1.5 K. By measuring the energy required to add each electron, the team calculated the resulting Wigner crystal’s electronic compressibility, a parameter that characterizes the ordering of electrons in the lattice. Comparing their results to predictions, the team observed the expected decrease in compressibility as electron density increased.

Deshpande says that previous measurements were inconclusive as they were muddied by another effect: changes in the crystal’s size. When an electron is added to a Wigner crystal, the crystal expands. Disentangling the properties of the crystal—like how well its electrons line up in the crystal lattice—from unknown changes in its size was previously undoable. The team overcame this difficulty by repeating the experiment with a range of parameters, such as the length of the carbon nanotubes and their band gap energy.

This research is published in Physical Review Letters.

–Katherine Wright

Katherine Wright is a Senior Editor for Physics.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Condensed Matter PhysicsQuantum Physics

Next Synopsis

Atomic and Molecular Physics

A New Negative Ion Takes the Cooling Spotlight

Read More »

Related Articles

Viewpoint: Equilibration in Quantum Systems
Quantum Physics

Viewpoint: Equilibration in Quantum Systems

Two research groups show that specific contributions to entropy may be the key to understanding how and when quantum systems equilibrate. Read More »

Viewpoint: Soft Metal Gains Hulk-Like Strength
Condensed Matter Physics

Viewpoint: Soft Metal Gains Hulk-Like Strength

When rapidly compressed to planetary-core pressures, lead—a soft metal—becomes 10 times stronger than high-grade steel. Read More »

Focus: Filtering Atoms by Their Spin
Quantum Physics

Focus: Filtering Atoms by Their Spin

A spin filter for cold atoms might be used as a testbed for spintronic devices and for searches for Majorana fermions.   Read More »

More Articles