Synopsis

Squeezing an Electron Crystal

Physics 12, s128
Researchers have determined the energy required to add an electron to a Wigner crystal—an ordered crystalline state made of electrons rather than atoms.
E. Minot/Oregon State University

The Wigner crystal is an elusive beast. Predicted in 1934, this crystal of electrons, which is one of the most strongly correlated states of matter, forms when the electron density is ultralow. But a lack of clean enough systems with that property make it hard to measure. Within the last few months, researchers have imaged its structure. Now another group, led by Vikram Deshpande at the University of Utah, Salt Lake City, has measured the energy required to add an electron to the crystal, a quantity that reveals the interaction strength of the system. Deshpande says that they were happily surprised to finally achieve the result, as it comes after decades of inconclusive measurements by other groups.

The team created a Wigner crystal by adding electrons one by one to a carbon nanotube suspended between two supports and cooled to 1.5 K. By measuring the energy required to add each electron, the team calculated the resulting Wigner crystal’s electronic compressibility, a parameter that characterizes the ordering of electrons in the lattice. Comparing their results to predictions, the team observed the expected decrease in compressibility as electron density increased.

Deshpande says that previous measurements were inconclusive as they were muddied by another effect: changes in the crystal’s size. When an electron is added to a Wigner crystal, the crystal expands. Disentangling the properties of the crystal—like how well its electrons line up in the crystal lattice—from unknown changes in its size was previously undoable. The team overcame this difficulty by repeating the experiment with a range of parameters, such as the length of the carbon nanotubes and their band gap energy.

This research is published in Physical Review Letters.

–Katherine Wright

Katherine Wright is a Senior Editor for Physics.


Subject Areas

Condensed Matter PhysicsQuantum Physics

Related Articles

Exploring Quantum Mpemba Effects
Quantum Physics

Exploring Quantum Mpemba Effects

In the Mpemba effect, a warm liquid freezes faster than a cold one. Three studies investigate quantum versions of this effect, challenging our understanding of quantum thermodynamics. Read More »

Atomic Spreading Produces Novel Superconductors
Condensed Matter Physics

Atomic Spreading Produces Novel Superconductors

A liquid-like spreading of metal atoms on a topological material can generate a superconductor—one that might benefit quantum computing. Read More »

A New Way to Transport Spin Currents
Magnetism

A New Way to Transport Spin Currents

Spin currents carried by magnetic waves called magnons can be sent across a device without using insulating magnets—a result that could lead to spintronic devices compatible with silicon electronics. Read More »

More Articles