Synopsis: Powering up Magnetization

New theoretical work identifies a dynamic form of multiferroic behavior, in which a time-varying electric polarization induces magnetization in a material.
Synopsis figure
D. Juraschek/ETH Zurich

Multiferroics are materials that exhibit both a permanent magnetization (ferromagnetism) and a permanent electric polarization (ferroelectricity). In some cases, the magnetization and polarization are coupled, which could offer novel ways to control devices for spintronics and other applications. A new theoretical work describes a previously uncharacterized case of magnetoelectric coupling, in which a time-varying electric polarization induces a magnetization. This so-called “dynamical multiferroicity” may explain multiple phenomena, including a recent observation of light-driven magnetization.

Magnetic and electric fields are intimately related through Maxwell’s equations. A time-varying electric field in a coil, for example, generates a magnetic field. In certain multiferroic materials, the internal magnetization and polarization bear a similar connection to each other. One known example of this is terbium manganite, for which a spatially varying magnetization produces an electric polarization. Dominik Juraschek, at the Swiss Federal Institute of Technology (ETH) in Zurich, and colleagues showed that a reciprocal effect was possible in which a time-varying polarization produces a magnetization. Microscopically, one can imagine a material’s polarization made up of tiny rotating electric dipoles that, acting like nanoscale coils, generate localized magnetic fields.

This dynamical multiferroicity could explain a recent observation of a magnetization wave (or magnon) induced by terahertz light pulses in erbium ferrite. According to the team’s analysis, these pulses generate lattice oscillations (phonons) that produce the requisite time-varying electric polarization. The team predicts a similar phonon-mediated effect in a highly polarizable, nonmagnetic material, like strontium titanate, placed in a strong magnetic field. The researchers also consider the potential of dynamic engineering, in which one could create novel magnetoelectric states in a material by continuously driving its polarization with terahertz light.

This research is published in Physical Review Materials.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Materials ScienceMagnetism

Previous Synopsis

Next Synopsis

Related Articles

Viewpoint: Porous Materials Exhibit Granular-Like Stress Chains
Materials Science

Viewpoint: Porous Materials Exhibit Granular-Like Stress Chains

Simulations of porous materials exhibit internal stress patterns like those in granular materials, despite the fact that these two systems are practically “negative images” of each other. Read More »

Synopsis: Two-Pulse X  Rays Probe Skyrmions
Nanophysics

Synopsis: Two-Pulse X Rays Probe Skyrmions

A new x-ray spectroscopy technique can measure magnetic fluctuations in vortex-like structures called Skyrmions with nanosecond resolution. Read More »

Synopsis: Organically Made Quantum Spin Liquids
Magnetism

Synopsis: Organically Made Quantum Spin Liquids

Versatile materials called metal-organic frameworks might be good systems in which to search for quantum spin liquids. Read More »

More Articles