Synopsis: Putting the Squeeze on Magnetic Resonance

Electron-spin-resonance measurements can achieve greater sensitivity using squeezed light as an input.
Synopsis figure
A. Bienfait/University of Paris-Saclay

Magnetic-resonance measurements of electron spins are starting to bump up against quantum limits, in which the noise level is dominated by quantum fluctuations in the microwave probe pulses. To go further in sensitivity, Audrey Bienfait from the University of Paris-Saclay and her colleagues have “squeezed” the incoming microwave light. This form of quantum-state engineering provided as much as a 25% reduction in the noise as compared to the unsqueezed case.

Quantum squeezing is a way of increasing the sensitivity of a measurement by rigging Heisenberg’s uncertainty principle, which sets the lower noise limit for measurements of two complementary variables, such as position and momentum. In a squeezed state, the noise is lowered in the variable of interest, while the balance is made up with increased noise in the other variable. Researchers have used squeezed optical states to improve imaging and gravitational-wave measurements.

Bienfait and her colleagues have now shown that electron-spin-resonance (ESR) techniques can also benefit from squeezing at microwave frequencies. Like their nuclear counterpart, ESR techniques can image biological and material samples by recording the microwave-induced precession of tiny magnetic spins, which in the ESR case are unpaired electrons. In its experiment, the team placed a bismuth-doped silicon sample inside a microwave cavity and applied a magnetic field. With a pair of microwave pulses, the researchers recorded the so-called spin echo, which is proportional to the number of spins whose precession rate matches the cavity resonance. Squeezing one phase-based variable for the pulses reduced the noise in the spin-echo signal. With further improvements, this squeezing technique could lower the noise by a factor of 5, which would speed up ESR measurement times.

This research is published in Physical Review X.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


Features

More Features »

Announcements

More Announcements »

Subject Areas

MagnetismQuantum Physics

Previous Synopsis

Quantum Physics

Direct View of Exchange Symmetry

Read More »

Next Synopsis

Atomic and Molecular Physics

Atoms Feel New Force

Read More »

Related Articles

Synopsis: Casimir Force Between Two Spheres
Quantum Physics

Synopsis: Casimir Force Between Two Spheres

Researchers use an atomic force microscope to measure the Casimir force between two spheres, paving the way for studying the force acting between objects of any shape. Read More »

Viewpoint: Spin Gyroscope is Ready to Look for New Physics
Optics

Viewpoint: Spin Gyroscope is Ready to Look for New Physics

An enhanced version of a magnetometer based on atomic spins could be used to search for theoretically predicted exotic fields with ultrahigh sensitivity. Read More »

Viewpoint: A Multimode Dial for Interatomic Interactions
Optics

Viewpoint: A Multimode Dial for Interatomic Interactions

A tunable multimode optical cavity modifies interactions between atomic condensates trapped in its interior from long range to short range, paving the way towards exploring novel collective quantum phenomena. Read More »

More Articles