Leah B. Shaw

Leah Shaw received her Ph.D. in physics from Cornell University in 2004. Her research included generating and analyzing new biophysical models for protein synthesis and chemotaxis in bacteria. She was awarded a National Research Council Fellowship to work at the Naval Research Laboratory, where she made discoveries in synchronization of delay coupled nonlinear systems, with applications to semiconductor and fiber laser arrays, one of which is patent pending. Currently a professor in the Applied Science Department at the College of William and Mary, she studies population dynamics, nonequilibrium statistical mechanics, and biologically inspired stochastic dynamical systems. She has made significant inroads in studying the spread of multistrain diseases on large populations, as well as the spread of epidemics on networks.

Ira B. Schwartz, Leah B. Shaw Published February 22, 2010

Nonlinear Dynamics | Interdisciplinary Physics

The idea behind adaptive behavioral epidemiology is that groups and individuals respond to the knowledge of a disease threat by changing their habits to avoid interactions with those who are contagious. Network-based models take this adaptive behavior into account by allowing the network to “rewire” its connections.