Focus

Bacteria Give Stirring Performance

Phys. Rev. Focus 24, 10
A new technique provides a 3-D view of the organized motion of swimming bacteria.
I. Aranson/Argonne National Lab
Little lava lamp. A new technique reveals plumes of bacteria, both sinking and rising, in a density image from a thin film of fluid. High concentrations of bacteria rest near the oxygen-rich top and bottom surfaces, while few bacteria are found in the oxygen-poor mid-layer. (See videos below.)
Video courtesy of Igor Aranson, Argonne National Laboratory.
The movie above records the transmission of light through the film as the thickness is steadily increased from 50 to 400 microns. At a certain thickness, one can see the formation of large dark regions, which indicate the onset of convective plumes in the interior of the film.
Video courtesy of Igor Aranson, Argonne National Laboratory.
The movie above, showing a slice through the film as captured by OCT, depicts light-colored plumes extending from the surface into the middle layers.
Video courtesy of Igor Aranson, Argonne National Laboratory.
The three-dimensional concentration of bacteria is shown below for a film thickness of 400 microns. The highest densities (red) are seen at the surfaces, with moderate density (blue) plumes falling and rising into the nearly void middle layers.

Like flocking birds and swarming locusts, swimming bacteria will coordinate their motion when highly concentrated. A team has now developed a technique that can capture a three-dimensional snapshot of the density of these cooperating bacteria inside a thin film of fluid. The results, reported in the September Physical Review E, show the rising and falling of bacterial plumes, which may help to increase the bacteria’s access to oxygen. The work could improve understanding of cooperative bacterial behavior and could also help researchers design better micro-mixers.

Collective motion has been observed throughout biology from sperm cells to wildebeests. Swimming bacteria, such as Escherichia coli and Bacillus subtilis, have been especially challenging to explain. Interactions among the microbes and the fluid enable the bacteria to form swirling vortices and dense congregations that span ten times the size of the individuals. But the exact mechanisms that drive this synchronized swimming are not fully understood, in part because the motion has only been seen in two dimensions from imaging of the fluid surface.

Igor Aranson of Argonne National Laboratory in Illinois and his colleagues have now designed an imaging technique that can observe dense bacterial populations in three dimensions. In this first demonstration they viewed B. subtilis swimming in a thin film of fluid stretched between 4 crossed wires that formed a square frame. The density of bacteria in the film was around 2×1010 per cubic centimeter, approximately 20 times denser than their normal state. By changing the size of the square, the team could indirectly vary the thickness of the film. With a conventional microscope they observed dense bacterial clusters visible at the surface when the film thickness was over 200 microns. These groupings were about a hundred microns wide and lasted for about 7 seconds.

To explain this collective motion, the team used optical coherence tomography (OCT), a technique that has been used in areas such as medical imaging and art restoration and is similar to ultrasound imaging. A light beam hits a point on the sample, and the backscattered (diffusely reflected) light is compared with a reference reflection from a movable mirror. The interference of the two determines the density of scatterers (in this case bacteria) at a specific depth. The system builds up a three-dimensional image by using many mirror positions for each sample point and scanning across many points on the sample surface. The researchers fit the density maps with a model that incorporates the diffusion of bacteria and oxygen.

The results showed that most of the B. subtilis swim along the top and bottom surfaces, where they occasionally bunch together. They gobble up oxygen diffusing into the fluid, and if the film is thick enough, the middle layer becomes highly depleted in oxygen–so much so that any bacteria that happen to dive away from the top surface will not have the energy to swim back to the surface. Instead, they will fall due to gravity and pull some of their neighbors along in the flow. Some bacteria on the bottom surface get swept upward by the circulating flow that develops. The resulting plumes of “out of breath” bacteria show up as persistent dark spots on the surface.

Rising and sinking bacterial flows have been seen before in B. subtilis, but only in much thicker films and more dilute solutions, where each cell has little influence on its neighbors. The research team found that the coordinated movement in their thin films helps to mix both the bacteria and oxygen ten times faster than would occur if individual bacteria were moving randomly. The authors speculate that this enhanced mixing could help the bacteria survive harsh conditions, such as a shrinking water environment due to evaporation. “If they did not do something like this, they would likely die,” Aranson says.

The new experiment shows that convective mixing occurs in a wider range of circumstances than previously thought, says Eric Lauga of University of California, San Diego. So the authors think their results could benefit research on improving mixing in micro-sized fluids using either real bacteria or machines that mimic them.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics Magazine based in Lyon, France.

More Information


Subject Areas

Fluid DynamicsBiological Physics

Related Articles

Assessing the Brain at a Range of Frequencies
Biological Physics

Assessing the Brain at a Range of Frequencies

A new frequency-based analysis of recordings from neurons in the brain may give insight into brain pathologies such as Parkinson’s disease. Read More »

Information Flow in Molecular Machines
Biological Physics

Information Flow in Molecular Machines

A theoretical model shows that exchange of information plays a key role in the molecular machines found in biological cells. Read More »

How Earth’s Magnetic Field Influences Flows in the Planet’s Core
Fluid Dynamics

How Earth’s Magnetic Field Influences Flows in the Planet’s Core

A “Little Earth Experiment” inside a giant magnet sheds light on so-far-unexplained flow patterns in Earth’s interior. Read More »

More Articles