Synopsis

Stretching out entanglement

Physics 2, s23
The hyperfine levels of a calcium ion form the basis of a qubit that stores quantum information with high fidelity for nearly 100ms.
Illustration: A. Zeilinger, Rev. Mod. Phys. 71, S288 (1999)

Successful quantum information processing requires that many building blocks—initialization of quantum states, storage of qubits over long times, devices for achieving entanglement, and final state readout—all operate together in a robust way. “Clock states”—pairs of atomic levels whose energy difference is insensitive to the trapping magnetic fields—are strong contenders for robust quantum information storage, provided they can store quantum information with high fidelity. Now collaborators from the University of Innsbruck and the Austrian Academy of Sciences report that the entanglement of optical qubits can be transferred with high fidelity onto hyperfine levels of a calcium ion with storage times of nearly 100ms.

The fundamental challenge for quantum information processing is how to preserve the fidelity of the system during each manipulation of the qubits in the presence of errors and decoherence. A promising approach is to carry out the entanglement on an optical transition of an atom, which is suited to high-fidelity operations, but then transfer the entanglement to clock states that are good at long-duration storage.

The research team successfully achieved this entanglement transfer in 43Ca+. They used a combination of laser and microwave excitation to entangle the optical transitions in two calcium ions. Normally this entanglement would decay rapidly ( 75% fidelity after 3.43ms). However, if laser pulses are used to transfer the entanglement to the hyperfine levels, a fidelity of 96.7% can be maintained after 96ms. Even longer coherence times may be possible with such schemes, which will be essential for ion-based quantum computing. – David Voss


Subject Areas

Atomic and Molecular Physics

Related Articles

Seeing Collisions in Cold Molecular Clouds
Atomic and Molecular Physics

Seeing Collisions in Cold Molecular Clouds

Dense ensembles of laser-cooled molecules allow the observation of molecular collisions—a result that could lead to applications of cold molecular gases in quantum simulation and fundamental physics tests. Read More »

Probing Liquid Water’s Structure with Attosecond X-Ray Pulses
Condensed Matter Physics

Probing Liquid Water’s Structure with Attosecond X-Ray Pulses

Using an ultrafast technique, researchers shed light on how the hydrogen-bonded structure of water is reflected in its x-ray spectrum. Read More »

Precise Measurement of Hydrogen’s Energy Levels
Atomic and Molecular Physics

Precise Measurement of Hydrogen’s Energy Levels

Researchers have measured the transition energy of several highly excited states, which could help resolve a discrepancy about the size of the proton. Read More »

More Articles