Synopsis

Towards Better Carbon Capture

Physics 8, s47
Calculations show how the efficiency of a promising carbon-capture material can be optimized by adding dopants.
Yuhua Duan/National Energy Technology Laboratory

Concerns over climate change have stimulated research into ways of capturing carbon dioxide, so it can be sequestered underground. One technique involves using metal oxides that absorb CO2 over a specific range of temperatures and pressures. New computational work characterizes the behavior of a family of oxides, called alkali zirconates, and shows the effects that doping has on their absorption properties. The results offer a recipe for optimizing a zirconate absorber for carbon-capture applications.

Carbon capture technology is already used in some chemical processing industries, but it is not yet considered efficient enough to trap the CO2 emitted from power plants and other large emitters. One key hurdle is the cost of recycling the sorbent material after it has absorbed CO2 This typically requires heating it above a “turnover temperature,” at which point the material releases its CO2 into a storage tank. Researchers are searching for sorbent materials with low turnover temperatures that will reduce the amount of heating needed.

Recent work has shown that doping alkali zirconates can improve their carbon capture properties. To study this in detail, Yuhua Duan of the National Energy Technology Laboratory, Pennsylvania, and his colleagues performed first-principles calculations on sodium zirconate ( Na2ZrO3), doped with either lithium or potassium. The computations described how the doping affects crystal structure, as well as electronic and phonon properties, which in turn influence the binding sites and capture reactions for CO2 The team showed that doping lowers the turnover temperature by an amount that depends on the type and concentration of dopant. The implication is that engineers could choose a dopant, or even a mix of different dopants, to obtain the optimum turnover temperature for a particular application.

This research is published in Physical Review Applied.

–Michael Schirber


Subject Areas

Materials ScienceEnergy Research

Related Articles

A New Cathode for Rechargeable Magnesium Batteries
Energy Research

A New Cathode for Rechargeable Magnesium Batteries

The commercialization of magnesium-ion batteries could be closer thanks to the development of a cathode material inspired by multispecies metal alloys. Read More »

Sodium as a Green Substitute for Lithium in Batteries
Energy Research

Sodium as a Green Substitute for Lithium in Batteries

Interest in developing batteries based on sodium has recently spiked because of concerns over the sustainability of lithium, which is found in most laptop and electric vehicle batteries. Read More »

Lithium-Ion “Traffic Jam” Behind Reduced Battery Performance
Energy Research

Lithium-Ion “Traffic Jam” Behind Reduced Battery Performance

Real-time in situ x-ray observations of new nickel-rich lithium-ion batteries reveal that reduced performance comes from lithium ions getting trapped in the cathode. Read More »

More Articles