Synopsis: Electrically driven spin excitations

Researchers in Japan have identified spin excitations in multiferroics that can be driven by electric fields.
Synopsis figure
Illustration: Courtesy of N. Kida

Multiferroics contain two or more ordered phases—such as ferromagnetism and ferroelecticity. In perovskite multiferroics—typically of the form RMnO3, where R=Tb,Dy, and Gd—it is possible to control the ferroelectric polarization using magnetic fields (and the magnetism using electric fields), a feature that is likely to make these materials important for applications in spintronics and data storage. This magnetoelectric response is strongest in DyMnO3, in which a magnetic field can increase the dielectric constant fivefold and even flip the ferroelectric polarization by 90 degrees. This high sensitivity is believed to be due to the unique spiral magnetic order that coexists with ferroelectricity in these materials.

Conventional ferroelectricity emerges because the ions in the crystal lattice displace (another way to say this is that the optical phonons condense). What are the collective modes responsible for magnetically driven ferroelectricity in materials like DyMnO3? Recent theoretical proposals have claimed they are “electromagnons”—rotational modes of the spiral spin structure that can be electrically activated. Noriaki Kida and colleagues at the University of Tokyo and Tohoku University report a study of these modes in Physical Review B. Using terahertz time domain spectroscopy they obtain the complete optical spectra for single crystals of DyMnO3 by varying the light polarization, temperature, and magnetic field. The authors identify an electromagnon excitation in the optical absorption band, but find that it cannot be the collective mode driving ferroelectricity because it survives irrespective of the direction in which the spins spiral. These findings contradict existing theoretical proposals and call for new ideas. – Sarma Kancharla


Features

More Features »

Announcements

More Announcements »

Subject Areas

OpticsMagnetism

Previous Synopsis

Atomic and Molecular Physics

Boosting interactions in BECs

Read More »

Next Synopsis

Nuclear Physics

Error tracking

Read More »

Related Articles

Viewpoint: Transportable Clocks Move with the Times
Optics

Viewpoint: Transportable Clocks Move with the Times

Transportable atomic clocks are now operating with fractional-frequency uncertainties below one part in 1016, opening up new applications. Read More »

Viewpoint: Trapped Ions Stopped Cold
Optics

Viewpoint: Trapped Ions Stopped Cold

A novel method for cooling trapped ions could boost the accuracy of atomic clocks. Read More »

Focus: Light Pushes and Pulls
Mechanics

Focus: Light Pushes and Pulls

Two forces coming from a light beam—one based on momentum transfer, the other on thermal effects—drive a tiny gold plate to move in opposite directions. Read More »

More Articles