Synopsis: Making room for holes

The ability to hole-dope Bi2Se3 is an important step toward exploring the thermoelectric properties of this material.
Synopsis figure
Illustration: Y. S. Hor et al., Phys. Rev. B (2009)

(Bi,Sb)2(Te,Se)3 binary compounds have been extensively studied for their thermoelectric properties. Although primarily Bi2Te3 and also Bi2Se3 are more commonly used as thermoelectric materials, they have recently begun to attract attention due to the promise of hosting so-called topological surface states.

One of the major issues for both thermoelectric applications and fundamental research on topological phases in Bi2Se3 is creating a hole-doped variant of this material. Pure Bi2Se3 exhibits n-type behavior due to the presence of selenium vacancies that act as electron donors, but hole-doping is much more difficult.

Writing in Physical Review B, Yew San Hor and collaborators from Princeton University report that they have managed to dope holes into Bi2Se3 by substituting calcium for bismuth. Scanning-tunneling microscopy reveals that the calcium donates holes that compensate the electrons created by the selenium vacancies.

Angle-resolved photoemission spectroscopy in turn reveals that the hole-doping substantially lowers the Fermi level in Bi2Se3 with respect to that of pure Bi2Se3. In order to access topological surface states, it is necessary to be able to tune the Fermi level, which should be possible in this material. The hole-doped material also exhibits intriguing transport anomalies at low temperatures that are currently not understood. – Alex Klironomos


More Announcements »

Subject Areas

Materials Science

Previous Synopsis

Next Synopsis

Nuclear Physics

Signs of a critical point

Read More »

Related Articles

Synopsis: Measuring Spin One Atom at a Time

Synopsis: Measuring Spin One Atom at a Time

Electron microscopy experiments have measured the spin state of individual metal atoms on a graphene layer, characterizing their potential for information storage applications.   Read More »

Synopsis: Light Sees Electronic Bands

Synopsis: Light Sees Electronic Bands

An all-optical alternative to photoemission spectroscopy can probe the electronic band structure of a solid. Read More »

Synopsis: Unexpected Cracking Behavior in Composite Structures
Materials Science

Synopsis: Unexpected Cracking Behavior in Composite Structures

A combination of brittle and porous materials fractures under opposite conditions to conventional brittle materials. Read More »

More Articles