Synopsis: How the Ice Floes Flow

The behavior of the increasingly thin ice found in the Arctic Ocean can be modeled as a two-dimensional, granular gas.
Synopsis figure
A. Herman, Phys. Rev. E (2011)

For several years, climate change has been implicated in the decline of the thick Arctic Ocean ice that builds up over many seasons and its replacement by thin, seasonal ice. The thinner ice, which has increasingly melted away during the height of summer each year, suffers far more deformation and fracture than thicker ice. Unfortunately, compared to thick, perennial ice, much less is known about the physical properties of this thin, broken ice, which consists largely of separate moving flat chunks or floes.

In a paper in Physical Review E, Agnieszka Herman of the University of Gdansk, Poland, tackles this problem by modeling fragmented ice as a two-dimensional, granular gas. In this picture, the separate ice floes move on the sea surface as rigid and nondeformable entities that lose kinetic energy because of inelastic collisions between them. The author reports that the model qualitatively reproduces the kind of motion and clustering seen in satellite imagery of the Arctic; future work will emphasize more quantitative modeling as better observational data become available, in particular, how floe clustering affects mass and heat transport. Such numerical modeling can contribute vital knowledge of seasonal cycles of sea ice coverage and its involvement with global climate change. – David Voss


More Announcements »

Subject Areas

Interdisciplinary PhysicsMaterials Science

Previous Synopsis

Particles and Fields

When Two Baryons Scatter

Read More »

Next Synopsis

Related Articles

Viewpoint: Relaxons Heat Up Thermal Transport
Materials Science

Viewpoint: Relaxons Heat Up Thermal Transport

A recasting of the theory that underlies thermal transport in electrical insulators relies on new vibrational modes called relaxons. Read More »

Focus: Keeping a Secret for a Whole Day
Interdisciplinary Physics

Focus: Keeping a Secret for a Whole Day

Researchers have securely contained a single bit for a record 24 hours, during which it was inaccessible to both sender and recipient, a technology that could be useful for voting or bidding. Read More »

Viewpoint: Improving Electronic Structure Calculations
Materials Science

Viewpoint: Improving Electronic Structure Calculations

A new approach to calculating the properties of molecules and solids may offer higher accuracy at reasonable computational cost, accelerating the discovery of useful materials. Read More »

More Articles