Synopsis: Convection Speeds Up on a Slant

Convective mixing of fluids goes faster when the container is tilted—a finding that may impact the choosing of geological sites for carbon dioxide storage.
Synopsis figure
P. A. Tsai et al., Phys. Rev. E (2013)

A potential strategy for reducing greenhouse gas emissions is to capture carbon dioxide (CO2) and store it underground. One of the most promising storage options for carbon capture and sequestration (CCS) is offered by deep saline aquifers, which are brine-filled reservoirs covered by a cap of impermeable rocks. A new experimental study reported in a Rapid Communication in Physical Review E looks at how convection in the CO2-brine mixture can help trap the greenhouse gas. In particular, the authors find that a sloping saline formation could promote convection and thus provide better storage than a horizontally level one.

Deep saline formations offer a large storage capacity. Ideally, the carbon dioxide will dissolve and get trapped into the brine. However, CO2—being less dense than brine—will rise upward and may form a separate top layer that restricts dissolution, except at the boundary between the two fluids. In this situation, convection could provide much-needed stirring. Previous studies have shown that, under certain conditions, CO2-rich brine at the boundary will sink downwards in convective plumes that force fresh brine upward into the CO2.

Peichun Amy Tsai and her colleagues from Princeton University, New Jersey, investigated convection in a laboratory model of a saline formation. Unlike previous work, they considered the effect of slanted boundaries, as found at some potential CCS sites. The team poured water and propylene glycol (as stand-ins for CO2 and brine) into a pore-filled container with transparent walls. They filmed the formation of convective plumes and found that tilting the container by 20 degrees increased the rate of dissolution by 20 percent. This enhancement is analogous to the faster sedimentation of suspended particles in a tilted tube (known as the Boycott effect). – Michael Schirber


Announcements

More Announcements »

Subject Areas

Fluid DynamicsInterdisciplinary Physics

Previous Synopsis

Nanophysics

Can’t Burst This Bubble

Read More »

Next Synopsis

Interdisciplinary Physics

Alice and Bob Go Nonlinear

Read More »

Related Articles

Synopsis: Droplet Hats
Fluid Dynamics

Synopsis: Droplet Hats

Experiments show that drops can form exotic shapes as they spread out on a surface if they are miscible with the surrounding fluid. Read More »

Synopsis: Bacteria Create Own Swim Lane
Biological Physics

Synopsis: Bacteria Create Own Swim Lane

Researchers calculate the size of a low-resistance buffer zone created by microbial organisms as they swim through the mucus lining of the stomach. Read More »

Synopsis: Internal Waves Take the Staircase Down
Fluid Dynamics

Synopsis: Internal Waves Take the Staircase Down

A theoretical study indicates that large-scale waves within the ocean can travel through “staircases” of water density, a motion that could enhance ice melting at the surface. Read More »

More Articles