Synopsis: Is turbulence here to stay—or not?

Turbulent states in a pipe do eventually decay, but you may have to wait for an extremely long time to prove it.
Synopsis figure
Illustration: Courtesy of B. Hof

When liquid flows through a pipe, both laminar and turbulent flow can coexist. An underlying conceptual question is whether turbulence is generally of a transient nature, or if it can be sustained beyond some critical point? This is not a trivial question since turbulent states can appear stable for incredibly long times before they suddenly collapse.

The majority of recent studies support the view that, beyond a critical Reynolds number, turbulent flow turns into a sustained (attractive) state. By measuring the lifetime of turbulent states in a pipe over eight orders of magnitude in time, Björn Hof, Alberto de Lozar, Dirk Jan Kuik, and Jerry Westerweel at the Max Planck Institute in Göttingen, Germany, and at the Delft University of Technology, The Netherlands, provide convincing evidence that no such critical point exists. Rather, according to their measurements, all turbulent states in a pipe are transient and, to answer the question, not here to stay. – Deniz van Heijnsbergen


Announcements

More Announcements »

Subject Areas

Fluid Dynamics

Previous Synopsis

Next Synopsis

Biological Physics

Molecular side step

Read More »

Related Articles

Synopsis: Coiling Viscous Jets
Fluid Dynamics

Synopsis: Coiling Viscous Jets

A new model can predict the patterns formed by a viscous jet falling onto a moving surface. Read More »

Synopsis: Staying Cool in Outer Space
Astrophysics

Synopsis: Staying Cool in Outer Space

In the absence of gravity, surface tension forces affect how fluids flow in heat pipes and may limit the device’s cooling performance on spacecraft missions. Read More »

Synopsis: Bubbles Pop, Droplets Don’t
Fluid Dynamics

Synopsis: Bubbles Pop, Droplets Don’t

A new technique can unambiguously identify nanobubbles living on the surface of a submerged object. Read More »

More Articles