Synopsis

Is turbulence here to stay—or not?

Physics 1, s55
Turbulent states in a pipe do eventually decay, but you may have to wait for an extremely long time to prove it.
Illustration: Courtesy of B. Hof

When liquid flows through a pipe, both laminar and turbulent flow can coexist. An underlying conceptual question is whether turbulence is generally of a transient nature, or if it can be sustained beyond some critical point? This is not a trivial question since turbulent states can appear stable for incredibly long times before they suddenly collapse.

The majority of recent studies support the view that, beyond a critical Reynolds number, turbulent flow turns into a sustained (attractive) state. By measuring the lifetime of turbulent states in a pipe over eight orders of magnitude in time, Björn Hof, Alberto de Lozar, Dirk Jan Kuik, and Jerry Westerweel at the Max Planck Institute in Göttingen, Germany, and at the Delft University of Technology, The Netherlands, provide convincing evidence that no such critical point exists. Rather, according to their measurements, all turbulent states in a pipe are transient and, to answer the question, not here to stay. – Deniz van Heijnsbergen


Subject Areas

Fluid Dynamics

Related Articles

Measuring the Rotation of Polluting Plastic Particles
Fluid Dynamics

Measuring the Rotation of Polluting Plastic Particles

New data on the rotation around both long and short axes of plastic strands may help researchers track and remove microplastics that pollute the ocean. Read More »

Ocean Currents Resolved on Regional Length Scales
Computational Physics

Ocean Currents Resolved on Regional Length Scales

Using a detailed simulation, researchers reveal how climate change will affect the regional dynamics of the conveyor-belt-like circulation of water through the Atlantic Ocean. Read More »

A Slight Curvature Gives Pebbles an Impacting Edge
Fluid Dynamics

A Slight Curvature Gives Pebbles an Impacting Edge

Pebbles that are slightly curved—rather than completely flat—exert the highest impact forces when dropped onto a watery surface. Read More »

More Articles