Synopsis: Molecular side step

Physicists present the mechanism of a DNA-based molecular motor that is fueled by a catalytic reaction and walks in one direction along a reusable track.
Synopsis figure
Illustration: Alan Stonebraker

How can you make a molecule walk in one direction? To fuel this basic translational motion, which would be a necessary component of any microscopic machine made up of molecular parts, requires converting chemical energy into kinetic energy.

In a paper appearing in Physical Review Letters, Simon Green, Jonathan Bath, and Andrew Turberfield of the University of Oxford in the UK propose a scheme for a two-footed molecular motor, made from DNA, that walks along a reusable track. The essential idea is that the motor binds in two places (its two feet) to a complementary DNA strand (the track). When a further strand of DNA is introduced—the fuel strand—the left foot unbinds, consumes the fuel (via a catalytic reaction), and moves to the other side of the right foot on the track. As this process repeats, the molecule moves in one direction along the track.

While they have not yet demonstrated that the motor can move a significant distance, the group has demonstrated two necessary conditions. With fluorescent tagging, they show that the left foot is more likely to be lifted and move to a new position than the right foot and that it is unlikely that both feet will move at the same time. – Jessica Thomas


Announcements

More Announcements »

Subject Areas

Biological Physics

Previous Synopsis

Next Synopsis

Related Articles

Synopsis: Maintaining the Sequence
Biological Physics

Synopsis: Maintaining the Sequence

Theoretical calculations indicate that an electrospray-based technique could correctly read out the amino acid sequence of protein molecules. Read More »

Synopsis: Neutron Stars in a Petri Dish
Nuclear Physics

Synopsis: Neutron Stars in a Petri Dish

Simulations of the dense matter in a neutron star’s crust predict the formation of structures that resemble those found in biological membranes. Read More »

Focus: Evolution Thins Out Distracting DNA
Biological Physics

Focus: Evolution Thins Out Distracting DNA

Proteins sometimes bind to the wrong stretch of DNA, but these "imposter" DNA sequences are statistically rare in many genomes, suggesting that evolution works against them. Read More »

More Articles