Synopsis

Out of the substrate, an atomic chain

Physics 2, s115
Under certain conditions, nanowires that form when a metal is deposited on a surface are primarily made of the substrate.
Illustration: D. H. Wei et al., Phys. Rev. Lett. (2009)

The ability to accurately and reproducibly create nanostructures with a known composition and set of properties is a fundamental goal in nanoscience. In addition to the lithographic techniques usually employed in this pursuit, self-assembly or self-organization provides an attractive route towards creating nanoscale objects.

The self-assembly of atoms and molecules deposited on a surface is guided by the competing mechanisms of diffusion, aggregation, and intermixing. However, if intermixing is dominant during the deposition process, the nano-objects that form can be composed of the substrate material instead of the deposited material.

Using scanning tunneling microscopy and spectroscopy, D. H. Wei, Chunlei Gao, Kh. Zakeri, and Marek Przybylski at the Max-Planck-Institut für Mikrostrukturphysik in Halle, Germany, report in Physical Review Letters that whether they deposit a submonolayer of chromium, manganese, iron, cobalt, or nickel on a palladium surface, the metal chains that ultimately form are made of palladium. Gao et al. argue that for the particular palladium surface they have chosen to study, intermixing is more energetically feasible than surface diffusion because of the large lattice mismatch between the substrate and the deposited material and they theorize that the deposited atoms simply diffuse into the bulk.

This solves the puzzle of why the scanning tunneling spectra of the atomic chains on this surface showed the same features regardless of the deposition material, and emphasize the role of atomic intermixing in self-assembly of nanostructures. – Daniel Ucko


Subject Areas

Nanophysics

Related Articles

Shape Matters in Self-Assembly
Nanophysics

Shape Matters in Self-Assembly

A theoretical study of self-assembly finds that hexagon-shaped building blocks can form large structures faster than triangular or square blocks. Read More »

Levitated Nanoresonator Breaks Quality-Factor Record
Nanophysics

Levitated Nanoresonator Breaks Quality-Factor Record

A nanoresonator trapped in ultrahigh vacuum features an exceptionally high quality factor, showing promise for applications in force sensors and macroscopic tests of quantum mechanics.  Read More »

Long-Range Resonances Slow Light in a Photonic Material
Nanophysics

Long-Range Resonances Slow Light in a Photonic Material

Light–matter interactions in certain one-dimensional photonic materials can bring light nearly to a standstill, an effect that researchers show requires consideration of long-range interactions between the material’s components. Read More »

More Articles