Synopsis: Out of the substrate, an atomic chain

Under certain conditions, nanowires that form when a metal is deposited on a surface are primarily made of the substrate.
Synopsis figure
Illustration: D. H. Wei et al., Phys. Rev. Lett. (2009)

The ability to accurately and reproducibly create nanostructures with a known composition and set of properties is a fundamental goal in nanoscience. In addition to the lithographic techniques usually employed in this pursuit, self-assembly or self-organization provides an attractive route towards creating nanoscale objects.

The self-assembly of atoms and molecules deposited on a surface is guided by the competing mechanisms of diffusion, aggregation, and intermixing. However, if intermixing is dominant during the deposition process, the nano-objects that form can be composed of the substrate material instead of the deposited material.

Using scanning tunneling microscopy and spectroscopy, D. H. Wei, Chunlei Gao, Kh. Zakeri, and Marek Przybylski at the Max-Planck-Institut für Mikrostrukturphysik in Halle, Germany, report in Physical Review Letters that whether they deposit a submonolayer of chromium, manganese, iron, cobalt, or nickel on a palladium surface, the metal chains that ultimately form are made of palladium. Gao et al. argue that for the particular palladium surface they have chosen to study, intermixing is more energetically feasible than surface diffusion because of the large lattice mismatch between the substrate and the deposited material and they theorize that the deposited atoms simply diffuse into the bulk.

This solves the puzzle of why the scanning tunneling spectra of the atomic chains on this surface showed the same features regardless of the deposition material, and emphasize the role of atomic intermixing in self-assembly of nanostructures. – Daniel Ucko


Announcements

More Announcements »

Subject Areas

Nanophysics

Previous Synopsis

Atomic and Molecular Physics

May cooler molecules prevail

Read More »

Next Synopsis

Related Articles

Viewpoint: An Inside View of Magnetic Skyrmions
Magnetism

Viewpoint: An Inside View of Magnetic Skyrmions

Atomic-scale imaging reveals the shape and size of a technologically interesting magnetic quasiparticle. Read More »

Focus: Voltage Fluctuations Converted to Electricity
Mesoscopics

Focus: Voltage Fluctuations Converted to Electricity

In a step toward the conversion of excess heat into electric current, researchers demonstrate a device that generates current in response to voltage fluctuations that mimic heat. Read More »

Viewpoint: Single Dot Meets Single Ion
Atomic and Molecular Physics

Viewpoint: Single Dot Meets Single Ion

Researchers show that a single photon can transfer an excitation from a quantum dot to an ion. Read More »

More Articles