Synopsis: Universality of the glass transition

Temperature and pressure appear to play a more dovetailed role in the glass transition than previously recognized.
Synopsis figure
Illustration: Kawasaki et al., Phys. Rev. Lett. 99, 215701 (2007)

A molecular liquid cooled to below its freezing point (i.e., supercooled) can become a glass. A colloidal fluid, a collection of suspended particles undergoing Brownian motion, can form a colloidal glass under increasing pressure.

Though both scenarios are examples of the so-called glass transition, researchers have disagreed on whether the two phenomena are related, that is, on whether temperature or pressure plays a more important role in the formation of a glass. Ning Xu at the Chinese University of Hong Kong, Thomas Haxton and Andrea Liu at the University of Pennsylvania, and Sidney Nagel at the University of Chicago, both in the US, explain in a paper published in Physical Review Letters that there is a limit in which the relaxation behavior near the glass transition can be understood without separately invoking temperature T and pressure p; the data collapses on a curve determined by their ratio T/p. This equivalence indicates that there is indeed a hitherto overlooked universal aspect to glass transition. – Sami Mitra


Announcements

More Announcements »

Subject Areas

Fluid Dynamics

Previous Synopsis

Statistical Physics

Gravity organizes sediment

Read More »

Next Synopsis

Quantum Information

When the quantum dog doesn’t bark

Read More »

Related Articles

Synopsis: Tiny Droplets Do the Twist
Fluid Dynamics

Synopsis: Tiny Droplets Do the Twist

Liquid-crystal droplets can act like controllable artificial swimmers, twisting in two and three dimensions. Read More »

Synopsis: Forming Granular Plugs
Fluid Dynamics

Synopsis: Forming Granular Plugs

Experiments on grain-water-air mixtures flowing through a tube find that frictional forces between the grains and the tube lead to the creation of a series of plugs. Read More »

Synopsis: Droplet Hats
Fluid Dynamics

Synopsis: Droplet Hats

Experiments show that drops can form exotic shapes as they spread out on a surface if they are miscible with the surrounding fluid. Read More »

More Articles