Synopsis: Rotating condensates show new vortex behavior

Acousto-optical techniques can be used to access a new regime of vortex nucleation in condensates in optical lattices with deep potential wells.
Synopsis figure
Figure credit: Alan Stonebraker

Ultracold atoms trapped in optical lattices provide a controllable way to study phenomena found in condensed matter, such as Mott-insulator transitions and Anderson localization. By rotating quantum gases one can simulate what happens when a magnetic field is applied to such condensed matter analogs. Now, writing in Physical Review Letters, Ross Williams, Sarah Al-Assam, and Christopher Foot of Oxford University, UK, combine these two approaches to investigate the effects on an ultracold quantum gas placed in rotating optical lattice.

A rubidium-87 condensate was created with conventional cooling and trapping methods, while interference of four intersecting laser beams formed the 2D optical lattice. Acousto-optical deflectors were used to rotate these laser beams, and hence the lattice, about a central axis. This rotation led to the formation of vortices, and the authors were able to track the number of vortices as a function of rotation frequency and depth of the lattice wells. Williams et al. found a new regime for vortex nucleation: when the lattice wells are deep, the novel behavior indicated that the vortices were formed locally at a lattice plaquette, created by rotation-induced phase differences between condensates localized at different lattice sites. – David Voss


Announcements

More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Next Synopsis

Related Articles

Viewpoint: Lamb Shift Spotted in Cold Gases
Atomic and Molecular Physics

Viewpoint: Lamb Shift Spotted in Cold Gases

Cold atomic gases exhibit a phononic analog of the Lamb shift, in which energy levels shift in the presence of the quantum vacuum. Read More »

Synopsis: Quantum Droplets Swell to a Macrodrop
Atomic and Molecular Physics

Synopsis: Quantum Droplets Swell to a Macrodrop

Experiments with ultracold magnetic atoms reveal liquid-like quantum droplets that are 20 times larger than previously observed droplets.    Read More »

Synopsis: Atomic Line Shape Carries Mark of Quantum Statistics
Atomic and Molecular Physics

Synopsis: Atomic Line Shape Carries Mark of Quantum Statistics

Precision measurements of an atomic transition in cold gases of helium-4 and helium-3 isolate the effects of quantum statistics on the transition’s line shape. Read More »

More Articles