Synopsis

A smoother quantum measurement

Physics 3, s33
A method called quantum smoothing has been experimentally shown to provide a mean-square measurement error that is a factor of 2 smaller than the quantum limit.
Illustration: Alan Stonebraker

The precision of any measurement is fundamentally limited by the standard quantum limit. Often there are classical quantities related to the dynamical evolution of a quantum system one would like to measure, a process known as quantum parameter estimation. This kind of estimation is useful in delicate measurements ranging from gravitational wave detection to quantum computation. Recently, Tsang [1] considered the case of quantum estimation for dynamical systems and proposed a method called quantum smoothing that combines past observations with “future” measurements (that is, a signal is inferred from measurements both before and after a chosen point in time).

As reported in Physical Review Letters, Trevor Wheatley at the University of New South Wales in Canberra, Australia, and co-workers in Australia, Japan, and Canada now have experimentally tested these ideas by considering the problem of estimating the phase of a continuous optical field in the presence of classical noise. The authors use optical modulators to prepare a laser beam in a known state with a predetermined noise signature and then apply an adaptive measurement technique to estimate the optical phase. By including data obtained after time t with data collected before t along with Tsang’s theory, the researchers were able to estimate the phase at t with a mean-square error more than a factor of 2 smaller than the standard quantum limit. – David Voss

[1] M. Tsang, Phys. Rev. Lett. 102, 250403 (2009).


Subject Areas

Quantum InformationOptics

Related Articles

Enhanced Interactions Using Quantum Squeezing
Quantum Information

Enhanced Interactions Using Quantum Squeezing

A quantum squeezing method can enhance interactions between quantum systems, even in the absence of precise knowledge of the system parameters. Read More »

How to Speed up a Quantum Network
Quantum Information

How to Speed up a Quantum Network

Sending photons to a remote site in groups should allow quantum links to be more rapidly established across future quantum networks than if photons are sent one at a time. Read More »

Stiffening a Spring Made of Light
Optics

Stiffening a Spring Made of Light

Adding a nonlinear crystal to an optical spring can change the spring’s stiffness, a finding that could allow the use of such devices as gravitational-wave detectors. Read More »

More Articles