Synopsis: Solar lab

Plasma chamber offers a laboratory-scale view of magnetic field eruptions on the sun’s surface.
Synopsis figure
Credit: Hinode, JAXA/NASA

Solar flares are caused by eruptions of the magnetic field near the sun’s surface that send out a blast of charged particles and intense electromagnetic radiation. The flares occasionally interfere with radio communication and electrical lines, but also play a role in the creation of the beautiful aurorae (the northern and southern lights).

Writing in Physical Review Letters, Shreekrishna Tripathi and Walter Gekelman, at the University of California, Los Angeles, US, describe their efforts to understand certain types of magnetic flux eruptions in the solar atmosphere by creating and imaging similar bursts in a laboratory-scale plasma chamber.

Tripathi and Gekelman focus on reproducing what are called “arched magnetic flux ropes,” literal arcs of magnetic flux on the sun’s surface that keep plasma confined for up to days at a time, before erupting. Within the confines of a 4-m-long cylindrical chamber that contains an ambient plasma, they create an arched magnetic field (using two electromagnets) and generate a second plasma that is confined by this magnetic field. The arched magnetic field and the plasma it confines remain stable until two lasers ablate carbon targets near each of the arc’s feet, sending two jetlike blasts of positively charged carbon—roughly 800 amperes—into the flux rope. The current produces its own magnetic field, creating a destabilizing kink in the flux rope that causes it to erupt with a wave of energy.

Tripathi and Gekelman’s images of the outward wave of plasma following the eruption provide a rare, albeit scaled down, glimpse of how such solar events evolve in time. – Jessica Thomas


More Announcements »

Subject Areas

AstrophysicsPlasma Physics

Previous Synopsis


Organic spin filters

Read More »

Next Synopsis

Quantum Information

Treasure hunt

Read More »

Related Articles

Synopsis: Solar Cycle Affects Cosmic Ray Positrons

Synopsis: Solar Cycle Affects Cosmic Ray Positrons

Discrepancies in the positron content of cosmic rays measured at different times are explained by the periodic reversal of the solar magnetic field’s direction. Read More »

Focus: LIGO Bags Another Black Hole Merger

Focus: LIGO Bags Another Black Hole Merger

LIGO has detected a second burst of gravitational waves from merging black holes, suggesting that such detections will soon become routine and part of a new kind of astronomy. Read More »

Viewpoint: Paving the Way to Space-Based Gravitational-Wave Detectors

Viewpoint: Paving the Way to Space-Based Gravitational-Wave Detectors

The first results from the LISA Pathfinder mission demonstrate that two test masses can be put in free fall with a relative acceleration sufficiently free of noise to meet the requirements needed for space-based gravitational-wave detection. Read More »

More Articles