Synopsis: Proactive metamaterials

Structurally engineered electromagnetic materials have now been made from active elements, expanding the range of possible optical effects in such so-called “metamaterials.”
Synopsis figure
Credit: Adapted from M. Wegener and S. Linden, Physics 2, 3 (2009)

When fabricated with structural patterning such as holes or twists, normal materials can acquire completely new electromagnetic properties, including perfect focusing (superlensing) and cloaking. These “metamaterials” are generally constructed from passive metals and insulators, deriving their unusual properties from structure rather than intrinsic composition. But as Alexander Katko, Shi Gu, John P. Barrett, Bogdan-Ioan Popa, and Steven Cummer of Duke University, and Gennady Shvets of the University of Texas at Austin, both in the US, report in Physical Review Letters, an entirely new set of possibilities emerges when metamaterials are made from active nonlinear elements whose inherent properties can be adjusted by external control or react dynamically to incident fields.

One basic building block of metamaterials is the split-ring resonator (SRR), a pair of notched annular metal rings. These are then assembled in 2D or 3D arrays to create the structured material with desired properties. Katko et al. combine the split in the ring with varactor diodes, which act as a combination of a diode and a voltage-controlled capacitor. Calculations predict, and experiments confirm, that an array of SRRs incorporating these nonlinear circuit elements will produce phase conjugation, in which an incoming microwave signal is converted into its time-reversed mirror image. Such effects can be used to correct wave fronts that propagate through distorting media. The authors propose that such active nonlinear metamaterials will find use in rf imaging much like superlensing with negative refractive index materials. – David Voss


More Announcements »

Subject Areas


Previous Synopsis

Particles and Fields

Uncertain sources

Read More »

Next Synopsis


Cosmic nudity

Read More »

Related Articles

Synopsis: Enter the Metacage

Synopsis: Enter the Metacage

An array of equally spaced nanowires, dubbed a metacage, could block optical radiation from entering or escaping a region of arbitrary shape. Read More »

Viewpoint: Sharing Heat in the Near Field

Viewpoint: Sharing Heat in the Near Field

The maximum amount of radiative heat that can be transferred between two objects of any shape has been calculated for separations of less than the thermal wavelength. Read More »

Synopsis: Quantum Rocking Motion in Molecular Rotors
Quantum Physics

Synopsis: Quantum Rocking Motion in Molecular Rotors

A type of quantum oscillation—known to occur for electrons in a crystal—has now been observed in a gas of molecular rotors that are spun around by laser pulses. Read More »

More Articles