Synopsis: Masking the true effect?

New measurements of silicon nanostructures cast doubt on the possibility that they support a giant piezoresistive effect.
Synopsis figure
Credit: J. Milne et al., Phys. Rev. Lett. (2010)

Piezoresistance—the effect of mechanical changes on resistance—is currently used to improve the performance of silicon-based electronic devices. Several recent publications have reported an effect called giant piezoresistance in silicon nanowires: an applied mechanical stress appears to change the wire’s resistance by an amount that is orders of magnitude greater than what is found in bulk silicon. For understandable reasons, this is intriguing to scientists and engineers working in areas ranging from nanoelectromechanical systems (NEMS) to biosensors.

Now, in their article in Physical Review Letters, Jason Milne and Alistair Rowe at Ecole Polytechnique and Steve Arscott at the Institute d’Electronique, de Microélectronique et de Nanotechnologie, both in France, and Christoph Renner at the University of Geneva, Switzerland, present evidence suggesting that the reported giant piezoresistance may have been an artifact.

Working with various silicon nano- and microstructures, the authors show that electrons and holes trapped at the surface, and not mechanical stress, are responsible for the large swings in resistance. In effect, the very act of measuring the resistance changes its value. The new work indicates that the magnitude of piezoresistance in wires is really no different from that in bulk silicon. Moreover, the charge trapping (or, “dielectric relaxation”) that occurs at the surface both swamps the true piezoresistance and results in apparent giant piezoresistance signatures that are identical to what was reported earlier. While Milne et al.’s results may not quite mean a back-to-the-drawing-board scenario, it points to the importance of making sure—in future experiments—that applied stress alone is causing the changes in resistance in these structures. – Sami Mitra


More Features »


More Announcements »

Subject Areas

Semiconductor PhysicsNanophysics

Previous Synopsis


Qubits, meet photons

Read More »

Next Synopsis

Particles and Fields

The X factor

Read More »

Related Articles

Focus: Nanochannel Could Separate Mixed Fluids
Fluid Dynamics

Focus: Nanochannel Could Separate Mixed Fluids

Calculations show that capillary forces affecting a fluid mixture flowing through a nanochannel could be used to separate the mixture. Read More »

Synopsis: Flip-Flopping the Bands

Synopsis: Flip-Flopping the Bands

A pair of semiconductor quantum wells with an inverted band structure hosts electrons whose spins are almost all in the same quantum state.   Read More »

Focus: Negative Resistance with a Single Atom

Focus: Negative Resistance with a Single Atom

Current flowing through a single silicon atom can be made to decrease with increasing voltage, potentially allowing the integration of a new type of component into microelectronic circuits. Read More »

More Articles