Synopsis: Tuning in to gravity

Tests of an early design for a gravity-wave detector determine sensitivity limits in a new frequency window.
Synopsis figure
Credit: M. Ando et al., Phys. Rev. Lett. 105, 161101 (2010)

Depending on their source, gravity waves—never-detected ripples in spacetime that result from massive accelerating bodies—could appear at almost any frequency. Each gravity-wave detector is designed to be sensitive over a different stretch of the spectrum. Now, writing in Physical Review Letters, a team of scientists in Japan describes early tests of a detector that is sensitive over a frequency range not currently completely captured by others.

Last year, Masaki Ando, at Kyoto University, and colleagues proposed building a detector that senses gravity waves by tracking the relative angle between two suspended bar-masses. This torsion-bar antenna, or “TOBA,” would be sensitive to gravity waves between 1mHz and 1Hz, a frequency range below that of the ground-based detector LIGO, but above that of the proposed space-based interferometer LISA.

In a first test of their detector’s sensitivity, the same group has designed a mini-version consisting of an upside-down T-shaped bar (about 22cm across). A magnet on one end of the bar allows the team to suspend the mass, free of contact, from a superconducting pivot, while a laser interferometry setup tracks the deflections in the bar.

The miniature TOBA provides an early estimate of the detector’s sensitivity, but the team expects three more stages of design before they scale up to a final version with 10-m-wide bars. – Jessica Thomas


Announcements

More Announcements »

Subject Areas

AstrophysicsGravitation

Previous Synopsis

Quantum Information

Early detection

Read More »

Next Synopsis

Atomic and Molecular Physics

Time doesn’t stand still

Read More »

Related Articles

Synopsis: Sharper Vision for Infrared Telescopes
Optics

Synopsis: Sharper Vision for Infrared Telescopes

Converting infrared light to visible light might boost the sensitivity of infrared telescope arrays. Read More »

Focus: More Hints of Exotic Cosmic-Ray Origin
Astrophysics

Focus: More Hints of Exotic Cosmic-Ray Origin

New Space Station data support a straightforward model of cosmic-ray propagation through the Galaxy but also add to previous signs of undiscovered cosmic-ray sources such as dark matter. Read More »

Viewpoint: Connecting the Bright and Dark Sides of Galaxies
Cosmology

Viewpoint: Connecting the Bright and Dark Sides of Galaxies

A universal law shows that the rotation of a disk galaxy is determined entirely by the visible matter it contains, even if the disk is mostly filled with dark matter. Read More »

More Articles