Synopsis: Slow Neutrons Are Dense

Liquid helium-4 is integral in a source of slow-moving neutrons, with a five-fold increase in yield in density.
Synopsis figure
Adapted from O. Zimmer et al., Phys. Rev. Lett. (2011)

Some aspects of fundamental physics that are studied in high-energy accelerator labs can also be investigated within less-expensive neutron facilities. With a mass but no charge, neutrons are particularly useful probes as they lack atomic structure and are thus immune to, for example, van der Waals and Casimir forces.

Ultracold neutrons (UCN)—slow-moving neutrons that can be trapped in containment devices with the help of effects such as geometrical constraints and gravity—can be captured for hundreds of seconds, enabling precise studies of the neutron’s static and decay properties.

Traditional UCN sources, based on liquid deuterium, made densities of about 10 per cm3 available for experiments. In their paper in Physical Review Letters, Oliver Zimmer at the Institut Laue-Langevin, France, and colleagues detail progress with a technology they published in Physical Review Letters in 2007. The authors now report a new source that produces UCN density of about 55 per cm3—a fivefold increase. This source is based on superfluid helium-4, which has no neutron absorption cross section or excitations below 1meV that can scatter the UCN. Advances in the storage time and density should prove useful to various user groups, particularly in their long-standing search for the neutron electric dipole moment. – Sami Mitra


Announcements

More Announcements »

Subject Areas

Particles and FieldsNuclear Physics

Previous Synopsis

Next Synopsis

Materials Science

Doubly Shocked

Read More »

Related Articles

Focus: Low Cost Polarized Positrons
Particles and Fields

Focus: Low Cost Polarized Positrons

A new technique requires much less energy to produce a beam of polarized positrons than previous techniques, making such beams potentially more widely available. Read More »

Synopsis: Lightweight Particles Might Explain Missing Lithium
Cosmology

Synopsis: Lightweight Particles Might Explain Missing Lithium

The apparent lack of lithium in the Universe, relative to theoretical expectations, could be explained by hypothetical lightweight and electrically neutral particles. Read More »

Viewpoint: Ghostly Neutrino Comes into Sharper Focus
Particles and Fields

Viewpoint: Ghostly Neutrino Comes into Sharper Focus

The first results from the NOvA experiment set new constraints on charge-parity violation in neutrinos and on the ordering of neutrino masses. Read More »

More Articles