Synopsis: Tipping the Balance

The breaking of charge-parity symmetry at lower temperatures than expected in the initial stages of the big bang could explain the abundance of matter over antimatter in the universe.

Were physics nice and symmetric, we might not be here: a universe in which the big bang created equal parts matter and antimatter could have simply annihilated itself. Things seem to be mostly matter, however, an imbalance that requires, among other things, a breaking of CP (charge-parity) symmetry at primordial high temperatures. All the bits and pieces of a proper understanding of this asymmetry appear to be present in the standard model of particle physics, but the problem is the lack of a specific physical mechanism that yields the correct value for the abundance of matter versus antimatter.

As they explain in a paper in Physical Review Letters, Tomáš Brauner at the University of Bielefeld, Germany, and colleagues propose that an asymmetry in the number of baryons may in fact be generated at lower than expected temperatures. Previous calculations suggested that CP violation within the standard model could not be a factor at the extremely high energies found in the initial moments after the big bang and so this CP effect has conventionally been neglected. Based on their calculations of a quantity called the effective bosonic action, which captures the creation and annihilation of the building blocks of matter, the authors argue otherwise. In their calculations of the detailed temperature dependence of CP violation, Brauner et al. show that the CP symmetry breaking is much stronger at lower temperatures (below 1 giga-electron-volt) than at temperatures where electroweak symmetry breaking occurs (around 100 giga-electron-volts). The authors hope that this finding of a strong low-temperature effect may invite a new look at scenarios for “cold” baryon generation and a fresh approach to understanding matter/antimatter asymmetry. – David Voss


Announcements

More Announcements »

Subject Areas

CosmologyParticles and Fields

Previous Synopsis

Quantum Information

One Photon Good, Two Better

Read More »

Next Synopsis

Materials Science

Giant Nernst Effect in a 1D Metal

Read More »

Related Articles

Synopsis: Deuterons Spin Together for a Thousand Seconds
Particles and Fields

Synopsis: Deuterons Spin Together for a Thousand Seconds

Researchers set a new record for the in-plane spin-alignment lifetime of deuterons circulating in a magnetic storage ring. Read More »

Synopsis: Testing Quantum Physics with Neutrinos
Quantum Physics

Synopsis: Testing Quantum Physics with Neutrinos

An experiment similar to the Bell inequality test confirms that neutrino oscillation is a quantum physics effect that is incompatible with alternative classical models. Read More »

Viewpoint: Of Gluons and Fireflies
Nuclear Physics

Viewpoint: Of Gluons and Fireflies

Improved models of gluon fluctuations within protons have been developed and applied to particle collision data, pointing to strong gluon fluctuations at high energies. Read More »

More Articles