Synopsis: Electrons Arrive By and By

A quantum theory of electrons in mesoscopic systems reveals the intervals at which they arrive after waiting to pass through a gate.
Synopsis figure
M. Albert et al., Phys. Rev. Lett. (2012)

Current fluctuations contain a wealth of information about electron transport in mesoscopic conductors. The waiting time distribution—the distribution of time between arrivals of charge carriers at a particular point—provides a complementary perspective. This quantity has been analyzed thus far mostly for classical systems or bosonic quantum systems. Waiting time distributions are particularly useful in the study of physics on short timescales, but a full quantum theory to permit the study of mesoscopic fermionic systems has been lacking.

Now, Mathias Albert and colleagues from the University of Geneva, Switzerland, have published a study in Physical Review Letters in which they develop such a quantum theory. Albert et al. illustrate their approach by using the example of a quantum point contact, which is a narrow constriction between two wide conducting regions, characterized by a controllable transmission probability. For a fully open contact, the electrons, although not evenly spaced due to their wave nature, have an average waiting time of h/eV. As the contact is pinched off, the transmission probability approaches zero, and the electrons start arriving at uncorrelated intervals, similar to the statistics for radioactive decay. The analysis of waiting time distributions in fermionic systems has important consequences for our understanding of mesoscopic transport. – Sarma Kancharla


Announcements

More Announcements »

Subject Areas

Mesoscopics

Previous Synopsis

Interdisciplinary Physics

Force Diagrams on Skis

Read More »

Next Synopsis

Atomic and Molecular Physics

Catching the Electron Spin Wave

Read More »

Related Articles

Viewpoint: Exorcising Maxwell’s Demon
Mesoscopics

Viewpoint: Exorcising Maxwell’s Demon

A pair of connected single-electron devices functions as a Maxwell’s demon that operates without external control. Read More »

Viewpoint: Quantum Squeezing of Micromechanical Motion
Mechanics

Viewpoint: Quantum Squeezing of Micromechanical Motion

The act of a quantum measurement reduces the uncertainty in the motion of a vibrating membrane below the fundamental quantum limit. Read More »

Synopsis: Through a Glass Densely
Optics

Synopsis: Through a Glass Densely

A new model for light scattering explains why an unexpected amount of light propagates through materials containing densely packed scattering objects.   Read More »

More Articles