Synopsis: Two Donors Are Better Than One

Pairs of donor atoms read out the energy levels in a silicon nanowire.
Synopsis figure
Adapted from B. Roche et al., Phys. Rev. Lett. (2012)

A primary measure of progress in the nanostructure industry is the ability to control doping mechanisms in silicon. Writing in Physical Review Letters, Benoit Roche and colleagues at the Atomic Energy and Alternative Energies Commission (CEA) in Grenoble, France, report they have fabricated a device that allows them to more accurately measure the energy levels associated with dopant atoms in silicon-based nanostructures.

The energy levels of a single donor in silicon are widely spaced due to the strong atomic-like electronic confinement. The ground state and first excited states produced by a prototypical arsenic donor atom are separated by an energy called the valley-orbit splitting, which is significantly lower when the atom is in a nanowire, compared to when it is in bulk silicon. Moreover, single-atom donor states in a nanostructure tend to be susceptible to where the donor atom is positioned, nearby interfaces, and external fields.

Roche et al. produce valley-orbit splitting close to the bulk value by fabricating a silicon nanowire with two phosphorous donors controlled by three voltage gates. In this compact device, the ground level of one donor atom acts as an energy filter that probes the levels of the other. With this arrangement, which is more resistant to environmental artifacts than one with a single dopant, the authors introduce a robust spectroscopic technique for developing silicon nanostructures. – Sami Mitra


Announcements

More Announcements »

Subject Areas

Semiconductor Physics

Previous Synopsis

Atomic and Molecular Physics

Wave of Correlation

Read More »

Next Synopsis

Materials Science

Layering to Warm Up

Read More »

Related Articles

Viewpoint: Crystal Vibrations Invert Quantum Dot Exciton
Semiconductor Physics

Viewpoint: Crystal Vibrations Invert Quantum Dot Exciton

Phonons assist in creating an excitation-dominated state, or population inversion, in a single quantum dot—an effect that could be used to realize single-photon sources. Read More »

Viewpoint: Diamond Spins Shining Bright
Quantum Information

Viewpoint: Diamond Spins Shining Bright

The spin on a silicon defect in diamond can be prepared in a coherent quantum state, a promising sign that it could encode information in a quantum internet. Read More »

Viewpoint: Spin Transport Goes Ballistic
Semiconductor Physics

Viewpoint: Spin Transport Goes Ballistic

The injection of spins into a high-mobility two-dimensional electron gas is unexpectedly efficient, suggesting that new theories may be needed to describe spin transport in such systems. Read More »

More Articles