Synopsis: Power Falls in Sync

According to network theory, decentralizing a power grid to accommodate more energy sources may improve the synchronization of its components.

In his book Cybernetics, mathematician Norbert Wiener asked “How is it that thousands of neurons or fireflies or crickets can suddenly fall into step with one another, all firing or flashing or chirping at the same time, without any leader or signal from the environment?” The question is at the heart of many network theories, which try to understand how a large number of interacting systems enter into collective and synchronized behavior. In Physical Review Letters, Martin Rohden and colleagues at the Max Planck Institute in Göttingen, Germany, use network theory to study the synchronization properties of electric power grids.

Robust synchronization underpins the stable operation of a grid. Every power source and every piece of equipment must run on the same 50 or 60 hertz clock. Desynchronization can mean failures and massive power blackouts.

Rohden et al. model the British grid as a system of coupled oscillators and analyze the differences between the existing grid, which is based on large centralized power plants, and alternative grids with widely distributed small-scale power sources. The key finding of their work is that distributing power generation supports self-organized synchronization—the ability to maintain phase synchrony of voltages across the grid without an external control—because it removes the sensitivity of the system to a few heavily loaded lines.

As countries steer towards a more balanced energy portfolio that includes a broad array of distributed renewable energy sources, the research suggests that decentralization may make future power grids smarter than expected. – Matteo Rini


More Announcements »

Subject Areas

Nonlinear DynamicsEnergy Research

Previous Synopsis

Next Synopsis

Semiconductor Physics

Topological Insulators by the Slice

Read More »

Related Articles

Synopsis: Robust Yet Flexible Clocks
Biological Physics

Synopsis: Robust Yet Flexible Clocks

A theoretical analysis explains why circadian clocks can be robust but also able to adapt to environmental changes.   Read More »

Synopsis: Putting Quantum Systems to Work
Quantum Physics

Synopsis: Putting Quantum Systems to Work

Quantum effects such as coherence and entanglement increase a system’s ability to store energy. Read More »

Synopsis: Time to Get In Sync
Nonlinear Dynamics

Synopsis: Time to Get In Sync

An analysis of a model that might describe fireflies and neurons shows the path to synchronization occurring in groups of charge-and-fire oscillators. Read More »

More Articles