Synopsis

Grain Flow Relies on Gravity

Physics 6, s3
Previously observed convection in granular materials is now shown to be driven in part by the force of gravity, according to new microgravity experiments.
N. Murdoch et al., Phys. Rev. Lett. (2013)

Grains, like those in a sand pile, sometimes flow convectively, mixing material between top and bottom. This convection is not driven by temperature gradients (as it often is with fluids), but the actual mechanism is still uncertain. New experiments in a parabolic flight environment show that gravity plays an active part in granular convection by tuning the frictional forces. The authors, reporting in Physical Review Letters, believe a better understanding of gravity’s role in grain mixing could benefit industrial applications, as well as geological studies of low-gravity asteroids.

Many questions remain about how grains flow, for example, in a landslide or a pharmaceutical manufacturing plant. Previous studies have shown that convective flows can form spontaneously in grains and may lead to segregation of particles of different size. Certain theories propose that gravity drives these flows, but experimental evidence has been lacking.

To test gravity’s role, Naomi Murdoch of the Côte d’Azur Observatory in Nice, France, and her colleagues placed a standard grain experiment on an airplane performing parabolic dives and climbs. The effective gravity on board varied from 0.01g to 1.8g. The grains ( 3-millimeter-wide glass beads) were seated inside an annular-shaped container in which the inner wall turned. The rotation exerted a shear force on the grains, causing some to break frictional contact with their neighbors and shuffle their position. The direction of these rearrangements mostly followed the rotation, but when gravity was “on,” the team also observed an inward flow, which they identified as part of a convective loop. This flow turned off when gravity was off. The authors explain that gravity helps drive convection by creating a gradient in the friction exerted on different grains, so that rearrangements occur preferentially near the top surface. – Michael Schirber


Subject Areas

Soft Matter

Related Articles

Witnessing the Birth of Skyrmions
Condensed Matter Physics

Witnessing the Birth of Skyrmions

Using thin layers of chiral nematic liquid crystals, researchers have observed the formation dynamics of skyrmions. Read More »

Prizes for Videos Featuring Mickey Mouse and Laptop Cables
Fluid Dynamics

Prizes for Videos Featuring Mickey Mouse and Laptop Cables

The winners of the third annual “Gallery of Soft Matter” competition included posters portraying robotic leaves and cannibalizing droplets and a video with what might be Steamboat Willie’s first appearance at the APS March Meeting. Read More »

Smooth Control of Active Matter
Soft Matter

Smooth Control of Active Matter

A theoretical study finds that the most energy-efficient way to control an active-matter system is to drive it at finite speed—unlike passive-matter systems. Read More »

More Articles