Synopsis: Condensate in a Can

Cylindrically shaped trap allows Bose-Einstein condensate to move freely in all three directions.
Synopsis figure
A. Gaunt et al., Phys. Rev. Lett. (2013)

By trapping and cooling clouds of atoms, physicists can control and explore exotic states of matter. The most dramatic example, long predicted but only demonstrated in 1995, is the Bose-Einstein condensate, in which many of the atoms in a cloud share a single quantum-mechanical state. In most experiments to date, however, atoms are attracted by a bowl-shaped potential whose strength varies across the cloud, which makes the condensate more complicated to analyze.

Teams have previously trapped atoms in long, uniform filaments, but in Physical Review Letters, Alexander Gaunt and his collaborators at the University of Cambridge, UK, describe a container that lets the atoms move freely in three dimensions. The researchers first cool a gas of a million or so rubidium atoms in a traditional trap to about a ten-millionth of a degree above absolute zero. They then turn on a green laser to create walls that gently repel the atoms. Part of the repulsive beam is shaped into a cylindrical tube surrounding the atoms, while two other parts form sheets that cap the ends of the tube. The effect of gravity is also canceled, using a small, spatially varying magnetic field.

The researchers confirmed the uniformity of the cloud by measuring the speeds with which atoms fly away when the trap is removed and the temperature at which cooling produces a Bose-Einstein condensate. The uniform trap should make it easier to compare results with theoretical calculations, and also to more accurately mimic other uniform quantum states of matter that are hard to study directly. – Don Monroe


Announcements

More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Next Synopsis

Related Articles

Viewpoint: Taming Ultracold Molecules
Atomic and Molecular Physics

Viewpoint: Taming Ultracold Molecules

Riding the coattails of cold atomic physics, researchers have demonstrated the ability to steer cold molecules into desired quantum states. Read More »

Synopsis: A Crystal of Light and Atoms
Atomic and Molecular Physics

Synopsis: A Crystal of Light and Atoms

A predicted type of atom-light crystal could host phonon-like excitations, allowing for new ways to simulate the physics of solids.   Read More »

Viewpoint: An Arrested Implosion
Condensed Matter Physics

Viewpoint: An Arrested Implosion

The collapse of a trapped ultracold magnetic gas is arrested by quantum fluctuations, creating quantum droplets of superfluid atoms. Read More »

More Articles