Synopsis: Modeling Biodiversity

Researchers have constructed a model of species dependence that shows how marine biodiversity could have grown and then leveled off.

According to the fossil record, about 500 million years ago the number of marine species began growing exponentially and then leveled off for 200 million years before exploding again. To understand how and why these changes occurred, researchers have formulated a variety of models built upon different assumptions. Some models support the idea that biodiversity increased after stagnation, others that the increase is an artifact of how the fossils have been collected and sampled. In a paper in Physical Review Letters, Jan Nagler at the ETH Zurich, Switzerland, and colleagues from the Max Planck Institute for Dynamics and Self-Organization, Germany, present a model based on network dynamics that takes into account the role of strong fluctuations, especially extinctions, in an exponentially growing ecosystem. The results agree well with paleontological data and offer insights into the sequence of growth and stagnation.

The authors base their model on a species interdependency network that captures how a given species thrives or dies because of other species. Species can become extinct either by abiotic causes (e.g., changes in environment) or biotic causes (e.g., extinction cascades in which a species disappears, taking with it all of its dependent species). With each time step of the calculation, a species goes extinct or turns into new species, with other species dependent on it. Over time, the species percolate up and down in a hierarchical ladder of dependency.

In this model, over time, a stable situation can develop where a few species at the top are dependent on a large number of species at the bottom, increasing robustness against extinction cascades. But unstable situations can arise in which species at the top are dependent on only a few species at the bottom—extinctions of which can wipe the whole ecosystem out. Because of the way that diversity depends on relative extinction probabilities, the results provide a possible explanation for why marine biodiversity stagnated while diversity on the continents did not. – David Voss


More Features »


More Announcements »

Subject Areas

Biological PhysicsStatistical Physics

Previous Synopsis

Particles and Fields

Four-Quark State Confirmed

Read More »

Next Synopsis

Semiconductor Physics

A More Practical Polariton Laser

Read More »

Related Articles

Viewpoint: New Clues as to Why Boyajian’s Star is Dimming
Statistical Physics

Viewpoint: New Clues as to Why Boyajian’s Star is Dimming

A statistical analysis links a star’s mysterious brightness fluctuations to internal nonequilibrium phenomena, rather than structures orbiting around the star. Read More »

Focus: Membrane Holes Can Shrink, Grow, or Stay Put
Soft Matter

Focus: Membrane Holes Can Shrink, Grow, or Stay Put

Pores in a polymer film do not change size over time if they have just the right diameter, according to experiments. Read More »

Focus: How Cells Remember Who They Are
Biological Physics

Focus: How Cells Remember Who They Are

A theoretical model of chromosome strands as polymers explains why chemical markers on genes can survive from one cell generation to the next. Read More »

More Articles