Synopsis

Down to Friction

Physics 8, s135
Experiments explain the significant increase in viscosity that occurs when stirring a mixture of cornstarch and water.
Chris Ness/University of Edinburgh

Vigorously stirring a suspension of micrometer-sized particles, such as cornstarch in water, can make the flowing fluid so viscous it behaves like a solid. This effect, known as shear thickening, can be a significant problem in the manufacture of colloidal products, causing blockages and costly damage to equipment. Now, experiments are finally able to explain why shear thickening happens.

Researchers have debated the cause of shear thickening for decades. Stirring pushes the particles closer together, which could increase liquid drag because the liquid has to pass through smaller gaps. Alternatively, it could increase friction because the particles are forced into contact and have to rub past each other (see 18 November 2013 Viewpoint).

To disentangle the two possible mechanisms, the groups of Itai Cohen at Cornell University, New York, and Wilson Poon at the University of Edinburgh, UK, used a technique known as shear reversal. This involves stirring a fluid suspension in one direction until it thickens and then measuring the viscosity of the fluid as soon as it is stirred the opposite way. If increased friction between the particles causes shear thickening then the fluid should instantly flow more easily when the stirring direction is reversed and the particles are pulled out of contact with each other. But if drag forces are at play then the viscosity shouldn’t suddenly change when the stirring direction does. That’s because these forces are independent of the direction of fluid flow. In repeated experiments, the authors observed a steep drop in the suspension’s viscosity when they altered the stirring direction—a clear indication that contact forces cause shear thickening.

This research is published in Physical Review Letters.

–Katherine Wright


Subject Areas

Soft Matter

Related Articles

Old Movie Demos New Tech
Metamaterials

Old Movie Demos New Tech

Using an old film as input, researchers demonstrate an algorithm that rapidly determines the positions of thousands of particles whose light-scattering produces an image or other desired output. Read More »

How a Zebra’s Stripes Align
Biological Physics

How a Zebra’s Stripes Align

Local curvature could drive directionality of periodic pigmentation patterns on animals. Read More »

How Droplets Form Inside Cells
Soft Matter

How Droplets Form Inside Cells

A new theory that accounts for disorder in a protein’s structure sheds light on the development inside a cell of tiny droplets that are vital to a cell’s function. Read More »

More Articles