Synopsis

Topological Defect on the Move

Physics 10, s110
Researchers have directed the motion of a domain-wall-like topological defect through a crystal of trapped ions.
J. Brox et al., Phys. Rev. Lett. (2017)

Topological defects are defects that break the order of otherwise ordered systems—think structural defects in crystalline solids or domain walls separating regions of different magnetic orientation in ferromagnets. They affect the properties of the systems in which they arise, but studying how the defects emerge and move is tough to do in a controlled way, especially in the presence of thermal fluctuations. In a new study, Jonathan Brox from the University of Freiburg, Germany, and colleagues report how they have used the exquisite controllability of trapped cold ions to create and direct the motion of a topological defect in a crystalline system.

The researchers created a zigzag array of some 30 laser-chilled ions confined in a radio frequency trap. The array has two ground-state configurations, which are mirror images of one another. Realizing both configurations in a single structure requires a domain-wall-like topological defect, or “kink,” between the two. Brox and colleagues generated such a kink and subjected it to thermal noise. They showed that this thermal environment can feed enough energy to the defect to make it vibrate and eventually move down the crystal and exit through one of its ends—which end depends on the kink’s internal structure. They imaged the defect and its motion by scattering laser photons off the ions and collecting them with a CCD camera. The array could be used to study how tiny molecular machines extract energy from a thermal environment in order to move.

This research is published in Physical Review Letters.

­–Ana Lopes

Ana Lopes is a Senior Editor of Physics.


Subject Areas

Condensed Matter PhysicsAtomic and Molecular Physics

Related Articles

Iterative Process Builds Near-Perfect Atom Array
Quantum Physics

Iterative Process Builds Near-Perfect Atom Array

Researchers show that atoms that escape from an atom array can be replaced on the fly—an important step toward operating a large-scale neutral-atom quantum computer. Read More »

How to Clean Up a Skyrmion Lattice
Condensed Matter Physics

How to Clean Up a Skyrmion Lattice

An ordered pattern of atomic spins with possible uses in computing can become more ordered if shaken at the right frequency. Read More »

Viewing Fast Vortex Motion in a Superconductor
Condensed Matter Physics

Viewing Fast Vortex Motion in a Superconductor

A new technique reveals high-speed trajectories of oscillating vortices and shows that they are 10,000 times lighter than expected. Read More »

More Articles