Synopsis

Drops Shatter in the Cold

Physics 10, s21
High-speed video and modeling reveal the conditions under which water drops explode when they’re frozen from the outside in.
S. Wildeman et al., Phys. Rev. Lett. (2017)

Droplets of water can burst apart when they freeze, sending out shards of ice in all directions. Sander Wildeman at the University of Twente in the Netherlands and colleagues have now filmed this process in unprecedented detail—from the formation of the first ice crystal to the final bang. This footage, plus the groups’ model-based calculations, reveals when and why water drops rupture as they freeze from the outside in.

The team began by supercooling a roughly millimeter-sized water drop in a specially designed chamber. This step puts the droplet at a temperature below its freezing point but leaves it free of ice crystals, thus ensuring the same starting conditions for all experiments. The researchers then set the freezing process in motion by touching the drop with a tip.

The team’s high-speed videos reveal that the freezing process in drops is complex. Within a few microseconds of being touched, a “shell” of solid ice encapsulates the drop and starts to thicken inwards, compressing still-liquid water. Some of the building pressure is released by an “arm” of ice that extends from one side of the drop. But eventually, cracks and bubbles form, and within about two seconds of the process beginning, the droplet shatters. Turning to their model, the group predicts that drops with diameters larger than 50 𝜇m will always explode when frozen because of their high inner pressures. Smaller drops, however, never burst because the surface tension of the shell is strong enough to keep them intact. The size dependence might influence the formation of hailstones and other precipitation.

This research is published in Physical Review Letters.

–Katherine Wright

Katherine Wright is a Contributing Editor for Physics.


Subject Areas

Fluid Dynamics

Related Articles

Robo-Fish Replicates Real Swimming Action
Fluid Dynamics

Robo-Fish Replicates Real Swimming Action

A robotic fish whose swimming action is initiated in the same way as that of real fish could help researchers test predictions about these underwater creatures, using well-controlled conditions. Read More »

Visualizing Flow Fields Around Colloids
Fluid Dynamics

Visualizing Flow Fields Around Colloids

A new technique for measuring displacements of tiny particles in a fluid reveals a previously unseen hydrodynamic flow pattern that could provide intel on the interface’s mechanical properties.   Read More »

An Active Particle in an Activity “Well”
Fluid Dynamics

An Active Particle in an Activity “Well”

A self-propelled particle trapped in a potential well defined by energy availability, has a unique swimming pattern that comes from hidden currents in the fluid in which it swims. Read More »

More Articles