Synopsis

Drops Act Like Tension “Compasses”

Physics 10, s52
A liquid drop’s shape can be used to detect tension anisotropies in an underlying elastic membrane.
R. Schulman et al., Phys. Rev. Lett. (2017)

Want to know the tension in a stretched membrane or thin film? Spraying it with liquid droplets might give you the answer. Rafael Schulman from McMaster University, Canada, and colleagues have shown that otherwise spherical drops resemble ellipses when they are sprayed on a film in which the tension is greater in one direction than in the other. The finding suggests that droplets could map the tension in a film much like iron filings trace the field from a magnet.

The group suspended an elastic polymer film such that it had a uniform tension and then sprayed the film with glycerol drops. Imaging from above, they observed that the drops assumed near-perfect circular shapes. But when the team stretched the film to induce an anisotropic tension, drops that were subsequently sprayed onto the surface looked more like peanut M&M’s—fatter along one axis than the other. Specifically, each drop’s long axis was lined up with the direction in which the film had been most strained, that is, the direction of higher tension.

Based on a side view of the drop-film profile, Schulman’s group and his colleagues at the ESPCI Paris were able to calculate the local tension in the film using an existing model, which they modified to incorporate anisotropic tension. This enabled them to map both the direction and magnitude of stresses at each point in the film. And unlike other tension-measurement approaches, theirs left the film intact.

This research is published in Physical Review Letters.

–Katherine Wright

Katherine Wright is a Contributing Editor for Physics.


Subject Areas

Fluid DynamicsSoft Matter

Related Articles

How Droplets Form Inside Cells
Soft Matter

How Droplets Form Inside Cells

A new theory that accounts for disorder in a protein’s structure sheds light on the development inside a cell of tiny droplets that are vital to a cell’s function. Read More »

Ocean Currents Resolved on Regional Length Scales
Computational Physics

Ocean Currents Resolved on Regional Length Scales

Using a detailed simulation, researchers reveal how climate change will affect the regional dynamics of the conveyor-belt-like circulation of water through the Atlantic Ocean. Read More »

A Slight Curvature Gives Pebbles an Impacting Edge
Fluid Dynamics

A Slight Curvature Gives Pebbles an Impacting Edge

Pebbles that are slightly curved—rather than completely flat—exert the highest impact forces when dropped onto a watery surface. Read More »

More Articles