Synopsis

Particle Acceleration with Multiple Laser Pulses

Physics 10, s83
Trains of laser pulses can be used to accelerate high-repetition-rate electron bunches to high energies.
S. Hooker/University of Oxford

Accelerating particles to high energies doesn’t necessarily require kilometer-sized accelerators. It can also be done over just a few centimeters using lasers. An emerging technique called laser wakefield acceleration (LWFA) uses a single laser pulse to accelerate an electron bunch to similar energies as those achieved at large facilities. Now, a team led by Simon Hooker at the University of Oxford, UK, has demonstrated a modified LWFA technique that uses trains of laser pulses, rather than a single one. This “multipulse” scheme has the potential to accelerate a thousand times more electron bunches per second than single-pulse methods, which would broaden the range of possible applications.

In LWFA, a short, intense laser pulse creates density waves in a plasma. Electrons riding on such waves pick up energy the way a surfer picks up energy from ocean waves. Lasers with sufficient energy to drive this process, however, can only fire a few times per second. Recent theoretical work indicated that trains of lower-energy laser pulses could generate waves that add coherently, providing similar acceleration fields. These pulse trains could be generated at multikilohertz rates. Hooker and his colleagues have now provided the first experimental demonstration of this concept.

By shaping the spectrum of the high-power laser at Rutherford Appleton Laboratory in the UK, the group reconfigured the laser to emit a train of up to seven pulses separated by about 100 femtoseconds. Injecting this into a plasma, they created a plasma wave whose amplitude agreed with predictions from models. In this proof-of-principle demonstration, no electrons were accelerated by the generated plasma waves. However, the group predicts that with optimized lasers the multipulse approach could generate electron beams with repetition rates of several kilohertz and energies comparable to those available at synchrotrons.

This research was published in Physical Review Letters.

–Matteo Rini

Matteo Rini is the Deputy Editor of Physics.


Subject Areas

Optics

Related Articles

Stiffening a Spring Made of Light
Optics

Stiffening a Spring Made of Light

Adding a nonlinear crystal to an optical spring can change the spring’s stiffness, a finding that could allow the use of such devices as gravitational-wave detectors. Read More »

Shielding Quantum Light in Space and Time
Quantum Physics

Shielding Quantum Light in Space and Time

A way to create single photons whose spatiotemporal shapes do not expand during propagation could limit information loss in future photonic quantum technologies. Read More »

A New Source for Quantum Light
Quantum Physics

A New Source for Quantum Light

A new device consisting of a semiconductor ring produces pairs of entangled photons that could be used in a photonic quantum processor. Read More »

More Articles